Soft g*-Closed Sets in Soft Biminimal Spaces

*R. Gowri¹ S. Vembu²

¹ Department of Mathematics, Government College for Women (Autonomous), Kumbakonam, India ² Research Scholar, Department of Mathematics, Government College for Women (Autonomous), Kumbakonam, India

Corresponding Author: R. Gowri

Abstract:

In this paper, we introduce $sg^*\tilde{m}_{(i,j)}$ -closed sets and $sg^*\tilde{m}_{(i,j)}$ -open sets in soft biminimal spaces which are defined over an initial universe set with a fixed set of parameters and its basic properties are investigated. Also, we introduce $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ -spaces and $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -spaces in soft biminimal spaces.

Mathematics Subject Classification: 54A05, 54A08, 54C10 Keywords: $sg^*\tilde{m}_{(i,j)}$ -closed set, $sg^*\tilde{m}_{(i,j)}$ -open set, $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ -space and $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ -space.

Date of Submission: 17-07-2017 Date of acceptance: 17-08-2017

I. Introduction

Levine [7] introduced generalized closed and open sets in topological spaces. Let X be a nonempty set and m_X^1 , m_X^2 be biminimal structures on X. A triple (X, m_X^1, m_X^2) is called a biminimal structure space (briefly bim-space) defined by C. Boonpok [1]. Also, he studied $m_X^1 m_X^2$ -closed sets and $m_X^1 m_X^2$ -open sets in biminimal structure spaces. C. Viriyapong [16] et.al introduced generalized m-closed sets in biminimal structure spaces. He defined a subset A of a biminimal structure space (X, m_X^1, m_X^2) is said to be (i, j)-generalized m-closed (briefly $gm_X^{(i, j)}$ -closed) if $m_X^j - Cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in m_X^i$. Also, introduced separation axioms $m^{(i,j)} - T_{\frac{1}{2}}$, $m^{(i,j)} - T_{\frac{1}{2}}^{\xi}$ and $m^{(i,j)} - \xi T_{\frac{1}{2}}$ in biminimal structure spaces. D. Molodtsov [9] introduced the concept of soft set theory and started to develop the basics of the corresponding theory as a new approach for modeling uncertainties. In this paper, we introduce soft g^* -closed sets in soft biminimal spaces which are defined over an initial universe with a fixed set of parameters and its basic properties are investigate and we introduce $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ and $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -spaces in soft biminimal spaces.

II. Preliminaries

Definition 2.1 [9] Let U be an initial universe and E be a set of parameters. Let P(U) denote the power set of U and A be a nonempty subset of E. A soft set F_A on the universe U is defined by the set of ordered pairs $F_A = \{(x, f_A(x)) : x \in E\}$, where $f_A : E \to P(U)$ such that $f_A(x) = \emptyset$ if $x \notin A$. Here, f_A is called approximate function of the soft set F_A . The value of $f_A(x)$ may be arbitrary, some of them may

DOI: 10.9790/5728-1304023342 www.iosrjournals.org 33 | Page

be empty, some may have non empty intersection.

Note that the set of all soft sets over U will be denoted by S(U).

Definition 2.2 [3] Let X be an initial universe set, E be the set of parameters and $A \subseteq E$. Let F_A be a non empty soft set over X and $\tilde{P}(F_A)$ is the soft power set of F_A . A subfamily \tilde{m} of $\tilde{P}(F_A)$ is called a soft minimal set over X if $F_\emptyset \in \tilde{m}$ and $F_A \in \tilde{m}$.

 (F_A, \tilde{m}) or (X, \tilde{m}, E) is called a soft minimal space over X. Each member of \tilde{m} is said to be \tilde{m} -soft open set and the complement of an \tilde{m} -soft open set is said to be \tilde{m} -soft closed set over X.

Definition 2.3 [3] Let X be an initial universe set, E be the set of parameters and $A \subseteq E$. Let F_A be a non empty soft set over X. Let $(F_A, \tilde{m_1})$ and $(F_A, \tilde{m_2})$ be the two different soft minimals over X. Then $(X, \tilde{m_1}, \tilde{m_2}, E)$ or $(F_A, \tilde{m_1}, \tilde{m_2})$ is called a soft biminimal spaces.

Definition 2.4 [3] Let (F_A, \tilde{m}) be a soft minimal space over X. For a soft subset F_B of F_A , the \tilde{m} -soft closure of F_B and \tilde{m} -soft interior of F_B are defined as follows:

$$(1) \quad \tilde{m}Cl(F_B) = \bigcap \left\{ F_\alpha : F_B \subseteq F_\alpha, F_A - F_\alpha \in \tilde{m} \right\},\,$$

(2)
$$\tilde{m}Int(F_B) = \bigcup \{F_\beta : F_\beta \subseteq F_B, F_\beta \in \tilde{m}\}.$$

Lemma 2.5 [3] Let (F_A, \tilde{m}) be a soft minimal space over X. For a soft subset F_B and F_C of F_A , the following properties hold:

(1)
$$\tilde{m}Cl(F_A - F_B) = F_A - \tilde{m}Int(F_B)$$
 and $\tilde{m}Int(F_A - F_B) = F_A - \tilde{m}Cl(F_B)$,

(2) If
$$(F_A - F_B) \in \tilde{m}$$
, then $\tilde{m}Cl(F_B) = F_B$ and if $F_B \in \tilde{m}$, then $\tilde{m}Int(F_B) = F_B$,

(3)
$$\tilde{m}Cl(F_{\emptyset}) = F_{\emptyset}$$
, $\tilde{m}Cl(F_A) = F_A$, $\tilde{m}Int(F_{\emptyset}) = F_{\emptyset}$ and $\tilde{m}Int(F_A) = F_A$,

(4) If
$$F_B \subseteq F_C$$
, then $\tilde{m}Cl(F_B) \subseteq \tilde{m}Cl(F_C)$ and $\tilde{m}Int(F_B) \subseteq \tilde{m}Int(F_C)$,

(5)
$$F_B \subseteq \tilde{m}Cl(F_B)$$
 and $\tilde{m}Int(F_B) \subseteq F_B$,

(6)
$$\tilde{m}Cl(\tilde{m}Cl(F_B)) = \tilde{m}Cl(F_B)$$
 and $\tilde{m}Int(\tilde{m}Int(F_B)) = \tilde{m}Int(F_B)$.

Lemma 2.6 [3] Let F_A be a non empty soft set and \tilde{m} be soft minimal over X satisfying property \mathcal{B} . For a soft subset F_B of F_A , the following properties hold:

- (1) $F_B \in \tilde{m}$ if and only if $\tilde{m}Int(F_B) = F_B$,
- (2) F_B is m̄-closed if and only if m̃Cl(F_B) = F_B,
- (3) $\tilde{m}Int(F_B) \in \tilde{m}$ and $\tilde{m}Cl(F_B) \in \tilde{m}$ -closed.

Definition 2.7 [3] Let F_A be a non-empty soft set and \tilde{m} be soft minimal over X satisfying property \mathcal{B} if the union of any family of subsets belonging to \tilde{m} belongs to \tilde{m} .

Definition 2.8 [4] A soft subset F_B of a soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ is called a soft generalized $\tilde{m}_i \tilde{m}_j$ -closed sets (briefly $sg\tilde{m}_{(i,j)}$ -closed) if $\tilde{m}_jCl(F_B) \subseteq U_B$ whenever $F_B \subseteq U_B$ and U_B is soft \tilde{m}_i -open, where i, j = 1, 2 and $i \neq j$. The complement of a $sg\tilde{m}_{(i,j)}$ -closed set is called a $sg\tilde{m}_{(i,j)}$ -open.

Definition 2.9 [4] A soft minimal space (F_A, \tilde{m}) is said to be $T_{\frac{1}{2}}$ -space if every $sq\tilde{m}$ -closed set is soft \tilde{m} -closed.

III. $sg^* ilde{m}_{(i,j)}$ Closed Sets In Soft Biminimal Spaces

Definition 3.1 A soft subset F_B of a soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ is said to be $sg^*\tilde{m}_{(i,j)}$ -closed set if $\tilde{m}_jCl(F_B) \subseteq U_B$ whenever $F_B \subseteq U_B$ and U_B is $sg\tilde{m}_i$ -open, where i, j = 1, 2 and $i \neq j$. The complement of a $sg^*\tilde{m}_{(i,j)}$ -closed set is said to be $sg^*\tilde{m}_{(i,j)}$ -open.

The family of all $sg^*\tilde{m}_{(i,j)}$ -closed (resp. $sg^*\tilde{m}_{(i,j)}$ -open)sets of $(F_A, \tilde{m}_1, \tilde{m}_2)$ is denoted by $sg^*\tilde{m}_{(i,j)}C(F_A)$ (resp. $sg^*\tilde{m}_{(i,j)}O(F_A)$), where i, j = 1, 2 and $i \neq j$.

```
Example 3.2 Let X = \{u_1, u_2\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subseteq E and F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}. Then F_{A_1} = \{(x_1, \{u_1\})\}, F_{A_2} = \{(x_1, \{u_2\})\}, F_{A_3} = \{(x_1, \{u_1, u_2\})\}, F_{A_4} = \{(x_2, \{u_1\})\}, F_{A_5} = \{(x_2, \{u_2\})\}, F_{A_6} = \{(x_2, \{u_1, u_2\})\}, F_{A_7} = \{(x_1, \{u_1\}), (x_2, \{u_1\})\}, F_{A_8} = \{(x_1, \{u_1\}), (x_2, \{u_1\})\}, F_{A_9} = \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\}, F_{A_{10}} = \{(x_1, \{u_2\}), (x_2, \{u_1\})\}, F_{A_{11}} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}, F_{A_{12}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}, F_{A_{13}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1\})\}, F_{A_{14}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}, F_{A_{15}} = F_A, F_{A_{16}} = F_\emptyset are all soft subsets of F_A
```

Take, $\tilde{m}_1 = \{F_{\emptyset}, F_{A_2}, F_{A_8}, F_{A_{11}}, F_A\}$ and $\tilde{m}_2 = \{F_{\emptyset}, F_{A_8}, F_{A_{13}}, F_A\}$. Here, F_{\emptyset} , F_{A_5} , F_{A_7} , F_{A_9} , $F_{A_{10}}$, $F_{A_{12}}$, $F_{A_{13}}$, F_A are $sg^*\tilde{m}_{(1,2)}$ -closed sets

Definition 3.3 A soft subset F_B of a soft biminimal spaces $(F_A, \tilde{m}_1, \tilde{m}_2)$ is said to be pairwise $sg^*\tilde{m}$ -closed if F_B is $sg^*\tilde{m}_{(1,2)}$ -closed and $sg^*\tilde{m}_{(2,1)}$ -closed. The complement of a pairwise $sg^*\tilde{m}$ -closed set is said to be pairwise $sg^*\tilde{m}$ -open.

Remark 3.4 By setting $\tilde{m}_1 = \tilde{m}_2$ in Definition 3.1, a $sg^*\tilde{m}_{(i,j)}$ -closed becomes $sg^*\tilde{m}$ -closed set.

Proposition 3.5 If F_B is soft \tilde{m}_j -closed subset of $(F_A, \tilde{m}_1, \tilde{m}_2)$, then F_B is $sg^*\tilde{m}_{(i,j)}$ closed.

The converse of the above proposition 3.5 is not true as seen from the following example.

Example 3.6 In example 3.2, the soft subset F_{A_7} is $sg^*\tilde{m}_{(1,2)}$ -closed but not soft \tilde{m}_2 -closed.

Proposition 3.7 If F_B is both $sg\tilde{m}_i$ -open and $sg^*\tilde{m}_{(i,j)}$ -closed, then F_B is soft \tilde{m}_j -closed.

Proposition 3.8 Every $sg^*\tilde{m}_{(i,j)}$ -closed set is $sg\tilde{m}_{(i,j)}$ -closed.

The converse of the above proposition 3.8 is not true as can be seen from the following example

Example 3.9 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$, $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$ and $\tilde{m}_1 = \{F_{\emptyset}, F_{A_2}, F_{A_7}, F_{A_{12}}, F_A\}$, $\tilde{m}_2 = \{F_{\emptyset}, F_{A_3}, F_{A_8}, F_{A_9}, F_A\}$. Then the soft subset F_{A_3} is $sg\tilde{m}_{(1,2)}$ -closed but not $sg^*\tilde{m}_{(1,2)}$ -closed set.

Remark 3.10 $sg^*\tilde{m}_{(i,j)}$ -closed sets and $sg\tilde{m}_j$ -closed sets are independent. The following example supports our claim

Example 3.11 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $X = \{u_1, u_2\}$, $A = \{x_1, x_2\}$, $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$ and $\tilde{m}_1 = \{F_\emptyset, F_{A_4}, F_{A_7}, F_{A_{10}}, F_A\}$, $\tilde{m}_2 = \{F_\emptyset, F_{A_5}, F_{A_8}, F_{A_{12}}, F_A\}$. Then the soft subset F_{A_2} is $sg\tilde{m}_2$ -closed but not $sg^*\tilde{m}_{(1,2)}$ -closed set. Also, the soft subset F_{A_8} is $sg^*\tilde{m}_{(1,2)}$ -closed set but not $sg\tilde{m}_2$ -closed.

Proposition 3.12 If F_B and G_B are $sg^*\tilde{m}_{(i,j)}$ -closed, then $F_B \cup G_B$ is also $sg^*\tilde{m}_{(i,j)}$ -closed set.

Remark 3.13 The intersection of two $sg^*\tilde{m}_{(i,j)}$ -closed sets need not be $sg^*\tilde{m}_{(i,j)}$ -closed as seen from the following example.

Example 3.14 In Example 3.9, F_{A_6} and $F_{A_{14}}$ are $sg^*\tilde{m}_{(1,2)}$ -closed but $F_{A_6} \cap F_{A_{14}} = F_{A_5}$ is not $sg^*\tilde{m}_{(1,2)}$ -closed.

Remark 3.15 $sg^*\tilde{m}_{(1,2)}C(F_A)$ is generally not equal to $sg^*\tilde{m}_{(2,1)}C(F_A)$.

Example 3.16 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$, $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$ and $\tilde{m}_1 = \{F_\emptyset, F_{A_2}, F_{A_7}, F_A\}$, $\tilde{m}_2 = \{F_\emptyset, F_{A_1}, F_{A_7}, F_{A_8}, F_{A_{13}}, F_A\}$. Then, $sg^*\tilde{m}_{(1,2)}C(F_A) = \{F_\emptyset, F_{A_2}, F_{A_5}, F_{A_9}, F_{A_{10}}, F_{A_{11}}, F_{A_{12}}, F_{A_{14}}, F_A\}$ and $sg^*\tilde{m}_{(2,1)}C(F_A) = \{F_\emptyset, F_{A_3}, F_{A_5}, F_{A_{10}}, F_{A_{11}}, F_{A_{12}}, F_{A_{13}}, F_{A_{14}}, F_A\}$. Thus, $sg\tilde{m}_{(1,2)}C(F_A) \neq sg\tilde{m}_{(2,1)}C(F_A)$.

Proposition 3.17 Let \tilde{m}_1 and \tilde{m}_2 be soft minimals on F_A . If $\tilde{m}_1 \subseteq \tilde{m}_2$, then $sg^*\tilde{m}_{(2,1)}C(F_A) \subseteq sg^*\tilde{m}_{(1,2)}C(F_A)$.

The converse of the above proposition 3.17 is not true as seen from the following example.

Example 3.18 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$, $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$ and $\tilde{m}_1 = \{F_\emptyset, F_{A_8}, F_{A_{14}}, F_A\}$, $\tilde{m}_2 = \{F_\emptyset, F_{A_8}, F_A\}$. Then $sg^*\tilde{m}_{(2,1)}C(F_A) \subseteq sg^*\tilde{m}_{(1,2)}C(F_A)$ but \tilde{m}_1 is not contained in \tilde{m}_2 .

Proposition 3.19 For each element $(x, u) \in (F_A, \tilde{m_1}, \tilde{m_2})$, the singleton $\{(x, u)\}$ is $sg\tilde{m_i}$ -closed or $\{(x, u)\}^c$ is $sg^*\tilde{m_{(i,j)}}$ -closed set.

Proof: Suppose that $\{(x,u)\}$ is not $\operatorname{sg}\tilde{m}_i$ -closed. Then $\{(x,u)\}^c$ is not $\operatorname{sg}\tilde{m}_i$ -open and F_A is the only $\operatorname{sg}\tilde{m}_i$ -open set which contains $\{(x,u)\}^c$ and $\{(x,u)\}^c$ is $\operatorname{sg}^*\tilde{m}_{(i,j)}$ -closed.

Proposition 3.20 Let F_B be a soft subset of soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$. If F_B be $sg^*\tilde{m}_{(i,j)}$ -closed, then $\tilde{m}_jCl(F_B) - F_B$ contains no nonempty $sg\tilde{m}_i$ -closed set, where i, j = 1, 2 and $i \neq j$

Proof: Let F_B be $sg^*\tilde{m}_{(i,j)}$ -closed set and H_B be a $sg\tilde{m}_i$ -closed set such that $H_B \subseteq \tilde{m}_j Cl(F_B) - F_B$. Since $F_B \in sg^*\tilde{m}_{(i,j)}(F_A)$, we have $\tilde{m}_j Cl(F_B) \subseteq (H_B)^c$. Thus $H_B \subseteq [\tilde{m}_j Cl(F_B)] \cap [\tilde{m}_j Cl(F_B)]^c = F_\emptyset$. Therefore, $H_B = F_\emptyset$. Hence, $\tilde{m}_j Cl(F_B) - F_B$ contains no nonempty $sg\tilde{m}_i$ -closed set.

Remark 3.21 The converse of the above proposition 3.20 is not true as seen from the following example

Example 3.22 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$, and $\tilde{m}_1 = \{F_\emptyset, F_{A_2}, F_{A_5}, F_{A_7}, F_A\}$ and $\tilde{m}_2 = \{F_\emptyset, F_{A_5}, F_{A_7}, F_A\}$. Take $F_B = F_{A_5}$. Then $\tilde{m}_2Cl(F_B) - F_B = \tilde{m}_2Cl(F_{A_5}) - F_{A_5} = F_{A_2}$ does not contain any non empty $sg\tilde{m}_1$ -closed set. But $F_B = F_{A_5}$ is not $sg^*\tilde{m}_{(1,2)}$ -closed.

Corollary 3.23 Let \tilde{m}_1 and \tilde{m}_2 be soft minimals on F_A satisfying property \mathcal{B} . If F_B is $sg^*\tilde{m}_{(i,j)}$ -closed set in $(F_A, \tilde{m}_1, \tilde{m}_2)$ then F_B is soft \tilde{m}_j -closed if and only if $\tilde{m}_iCl(F_B) - F_B$ is $sg\tilde{m}_i$ -closed.

Proof: If F_B is soft \tilde{m}_j -closed, then $\tilde{m}_jCl(F_B) = F_B$. That is $\tilde{m}_jCl(F_B) - F_B = F_\emptyset$ and hence $\tilde{m}_jCl(F_B) - F_B$ is $sg\tilde{m}_i$ -closed.

Conversely, If $\tilde{m}_j Cl(F_B) - F_B$ is $sg\tilde{m}_i$ -closed, then by proposition 3.20, $\tilde{m}_j Cl(F_B) - F_B = F_\emptyset$, since F_B is $sg^*\tilde{m}_{(i,j)}$ -closed. Therefore, F_B is soft \tilde{m}_j -closed.

Proposition 3.24 If F_B be $sg^*\tilde{m}_{(i,j)}$ -closed set of $(F_A, \tilde{m}_1, \tilde{m}_2)$ such that $F_B \subseteq G_B \subseteq \tilde{m}_j Cl(F_B)$, then G_B is also $sg^*\tilde{m}_{(i,j)}$ -closed set of $(F_A, \tilde{m}_1, \tilde{m}_2)$, where i, j = 1, 2 and $i \neq j$.

Proof: Suppose that F_B is $sg^*\tilde{m}_{(i,j)}$ -closed set and $F_B \subseteq G_B \subseteq \tilde{m}_jCl(F_B)$. Let $G_B \subseteq U_B$ and U_B is $sg\tilde{m}_i$ -open. Then $F_B\subseteq U_B$. Since F_B is $sg^*\tilde{m}_{(i,j)}$ -closed, we have $\tilde{m}_jCl(F_B)\subseteq U_B$. Since $G_B\subseteq \tilde{m}_jCl(F_B)$, $\tilde{m}_jCl(G_B)\subseteq \tilde{m}_jCl(F_B)\subseteq U_B$. Hence, G_B is $sg^*\tilde{m}_{(i,j)}$ -closed set.

Theorem 3.25 A soft subset F_B of soft biminimal space in $(F_A, \tilde{m_1}, \tilde{m_2})$ is $sg^*\tilde{m}_{(i,j)}$ open set if and only if $H_B \subseteq \tilde{m_j}Int(F_B)$ whenever H_B is $sg\tilde{m_i}$ -closed and $H_B \subseteq$ F_B , where i, j = 1, 2 and $i \neq j$.

Proof: Let F_B be $sg^*\tilde{m}_{(i,j)}$ -open set. Let H_B be a $sg\tilde{m}_i$ -closed set such that $H_B \subseteq F_B$. Let $F_B \subseteq H_B$ and H_B is $sg\tilde{m}_i$ -closed. Then $(F_B)^c \subseteq (H_B)^c$ and $(H_B)^c$ is $sg\tilde{m}_i$ -open, we have $(F_B)^c$ is $sg^*\tilde{m}_{(i,j)}$ -closed. Hence, $[\tilde{m}_jCl(F_B)^c] \subseteq (H_B)^c$. Consequently, $[\tilde{m}_jInt(F_B)]^c \subseteq (H_B)^c$. Therefore, $H_B \subseteq \tilde{m}_jInt(F_B)$.

Conversely, suppose $H_B \subseteq \tilde{m}_j Int(F_B)$ whenever $H_B \subseteq F_B$ and H_B is $sg\tilde{m}_i$ -closed. Let $(F_B)^c \subseteq U_B$ and U_B is $sg\tilde{m}_i$ -open. Then $(U_B)^c \subseteq F_B$ and $(U_B)^c$ is $sg\tilde{m}_i$ -closed. By hypothesis $(U_B)^c \subseteq \tilde{m}_j Int(F_B)$. Hence, $[\tilde{m}_j Int(F_B)]^c \subseteq U_B$. (i.e) $[\tilde{m}_j Cl(F_B)^c]$ $\subseteq U_B$. Consequently, $(F_B)^c$ is $sg^*\tilde{m}_{(i,j)}$ -closed set. Hence, F_B is $sg^*\tilde{m}_{(i,j)}$ -open. \square

Remark 3.26 Every soft \tilde{m}_1 -open set is $sg^*\tilde{m}_{(1,2)}$ -open but the converse is not true in general as can be seen from the following example.

Example 3.27 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$, $\tilde{m}_1 = \{F_\emptyset, F_{A_1}, F_{A_6}, F_{A_9}, F_A\}$ and $\tilde{m}_2 = \{F_\emptyset, F_{A_7}, F_{A_{13}}, F_A\}$. Then the soft subset F_{A_8} is $sg^*\tilde{m}_{(1,2)}$ -open but not soft \tilde{m}_1 -open.

Remark 3.28 The union of any two $sg^*\tilde{m}_{(i,j)}$ -open set is not necessary $sg^*\tilde{m}_{(i,j)}$ -open set as in the following example.

Example 3.29 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$, $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$ and $\tilde{m}_1 = \{F_\emptyset, F_{A_1}, F_{A_4}, F_{A_8}, F_A\}$, $\tilde{m}_2 = \{F_\emptyset, F_{A_2}, F_{A_5}, F_{A_{10}}, F_A\}$. Then $F_B = F_{A_2}$ and $G_B = F_{A_8}$ are $sg^*\tilde{m}_{(1,2)}$ -open sets but $F_B \cup G_B = F_{A_{14}}$ is not $sg^*\tilde{m}_{(1,2)}$ -open.

Proposition 3.30 If F_B and G_B are two $sg^*\tilde{m}_{(i,j)}$ -open subsets of soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$, then $F_B \cap G_B$ is also $sg^*\tilde{m}_{(i,j)}$ -open.

Proof: Suppose H_B is $\operatorname{sg} \tilde{m}_j$ -closed set contained in $F_B \cap G_B$. Since F_B and G_B are $\operatorname{sg}^* \tilde{m}_{(i,j)}$ -open sets. Since, $H_B \subseteq F_B \cap G_B$, we have $H_B \subseteq F_B$ and $H_B \subseteq G_B$. Since F_B and G_B are two $\operatorname{sg}^* \tilde{m}_{(i,j)}$ -open sets, we have $H_B \subseteq \tilde{m}_j \operatorname{Int}(F_B)$ and $H_B \subseteq \tilde{m}_j \operatorname{Int}(G_B)$. Therefore, $H_B \subseteq \tilde{m}_j \operatorname{Int}(F_B) \cap \tilde{m}_j \operatorname{Int}(G_B) \subseteq \tilde{m}_j \operatorname{Int}(F_B \cap G_B)$. Hence, $F_B \cap G_B$ is $\operatorname{sg}^* \tilde{m}_{(i,j)}$ -open.

Proposition 3.31 The intersection of $sg^*\tilde{m}_{(i,j)}$ -open set and soft \tilde{m}_j -open set is always $sg^*\tilde{m}_{(i,j)}$ -open.

Proof: Suppose that F_B is $sg^*\tilde{m}_{(i,j)}$ -open and G_B is soft \tilde{m}_j -open. Since G_B is soft \tilde{m}_j -open, we have $(G_B)^c$ is soft \tilde{m}_j -closed. Then $(G_B)^c$ is $sg^*\tilde{m}_{(i,j)}$ -closed (by proposition 3.5). Hence, G_B is $sg^*\tilde{m}_{(i,j)}$ -open. Hence $F_B \cap G_B$ is $sg^*\tilde{m}_{(i,j)}$ -open (by theorem 3.30)

Proposition 3.32 Let F_B and G_B be a soft subset of soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ such that $\tilde{m_j}Int(F_B) \subseteq G_B \subseteq F_B$. If F_B is $sg^*\tilde{m_{(i,j)}}$ -open, then G_B is $sg^*\tilde{m_{(i,j)}}$ -open, where i, j = 1, 2 and $i \neq j$.

Proof: Let F_B is $sg^*\tilde{m}_{(i,j)}$ -open. Let H_B be a $sg\tilde{m}_i$ -closed such that $H_B \subseteq G_B$. Since $H_B \subseteq G_B$ and $G_B \subseteq F_B$, we have $H_B \subseteq F_B$. Therefore, $H_B \subseteq \tilde{m}_j Int(F_B)$. Since $\tilde{m}_j Int(F_B) \subseteq G_B$, we have $\tilde{m}_j Int(\tilde{m}_j Int(F_B)) \subseteq \tilde{m}_j Int(G_B)$. Therefore, $\tilde{m}_j Int(F_B) \subseteq \tilde{m}_j Int(G_B)$. Consequently, $H_B \subseteq \tilde{m}_j Int(G_B)$. Hence, G_B is $sg^*\tilde{m}_{(i,j)}$ -open.

Proposition 3.33 A soft subset F_B is $sg^*\tilde{m}_{(i,j)}$ -closed set then $\tilde{m}_jCl(F_B) - F_B$ is $sg^*\tilde{m}_{(i,j)}$ -open set.

Proof: Let F_B is $sg^*\tilde{m}_{(i,j)}$ -closed set. Let $H_B \subseteq \tilde{m}_j Cl(F_B) - F_B$ where H_B is $sg\tilde{m}_i$ -closed set. Since F_B is $sg^*\tilde{m}_{(i,j)}$ -closed, we have $\tilde{m}_j Cl(F_B) - F_B$ does not contain nonempty $sg\tilde{m}_i$ -closed by Proposition 3.20. Consequently, $H_B = F_\emptyset$. Therefore, $F_\emptyset \subseteq \tilde{m}_j Cl(F_B) - F_B$, $F_\emptyset \subseteq \tilde{m}_j Int(\tilde{m}_j Cl(F_B) - F_B)$, we obtain $H_B \subseteq \tilde{m}_j Int(\tilde{m}_j Cl(F_B) - F_B)$. Hence, $\tilde{m}_j Cl(F_B) - F_B$ is $sg^*\tilde{m}_{(i,j)}$ -open.

$$\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$$
 and $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -Soft biminimal spaces

In this section, we introduce $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ and $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -soft biminimal spaces with the help of $sg^*\tilde{m}_{(i,j)}$ -closed set.

Definition 4.1 A soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is said to be an $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}$ space if every $sg\tilde{m}_{(i,j)}$ -closed set is soft $\tilde{m_j}$ -closed.

Definition 4.2 A soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is said to be an $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ space if every $sg^*\tilde{m}_{(i,j)}$ -closed set is soft $\tilde{m_j}$ -closed.

Proposition 4.3 If $(F_A, \tilde{m_1}, \tilde{m_2})$ is $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}$ -space, then it is a $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ -space.

Remark 4.4 The converse of the above Proposition 4.3 is not trure. The following example supports our claim.

Example 4.5 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m_1}, \tilde{m_2})$ be a soft biminimal space where $U = \{u_1, u_2\}, A = \{x_1, x_2\}$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}, \tilde{m_1} = \{F_\emptyset, F_{A_1}, F_A\}$ and $\tilde{m_2} = \{F_\emptyset, F_{A_1}, F_{A_{12}}, F_A\}$. Then $(F_A, \tilde{m_1}, \tilde{m_2})$ is $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^*$ -space but not a $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}$ -space.

Theorem 4.6 A soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ -space if and only if $\{(x, u)\}$ is either soft \tilde{m}_j -open or $sg\tilde{m}_i$ -closed for each $(x, u) \in F_A$, where i, j = 1, 2 and $i \neq j$.

Proof: Suppose that $\{(x,u)\}$ is not $sg\tilde{m}_i$ -closed. Then $\{(x,u)\}^c$ is $sg^*\tilde{m}_{(i,j)}$ -closed set by Proposition 3.19 .Since $(F_A, \tilde{m}_1, \tilde{m}_2)$ is an $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ -space, $\{(x,u)\}^c$ is soft

 \tilde{m}_j -closed and hence $\{(x,u)\}$ is soft \tilde{m}_j -open. Conversely, let H_B be a $sg^*\tilde{m}_{(i,j)}$ -closed set. By assumption, $\{(x,u)\}$ is soft \tilde{m}_j -open or $sg\tilde{m}_i$ -closed for any $(x,u)\in \tilde{m}Cl(H_B)$. We have the following two cases: case(i): Suppose $\{(x,u)\}$ is soft \tilde{m}_j -open. Since $\{(x,u)\}\cap H_B\neq F_\emptyset$, we have $(x,u)\in H_B$. case(ii): Suppose $\{(x,u)\}$ is $sg\tilde{m}_i$ -closed. If $(x,u)\notin H_B$, then $\{(x,u)\}\subseteq \tilde{m}Cl(H_B)-H_B$, which is a contradiction to Proposition 3.20. Hence, $(x,u)\in H_B$. Thus in both cases, we conclude that H_B is soft \tilde{m}_j -closed. Hence $(F_A,\tilde{m}_1,\tilde{m}_2)$ is an $\tilde{m}_{(i,j)}-T_{\frac{1}{2}}^*$ -space.

Remark 4.7 (F_A, \tilde{m}_1) -space is not generally $\tilde{m} - T_{\frac{1}{2}}^*$ -space even if $(F_A, \tilde{m}_1, \tilde{m}_2)$ is $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^*$ -space as shown in the following Example 4.8. Also $(F_A, \tilde{m}_1, \tilde{m}_2)$ is not generally $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^*$ -space even if both (F_A, \tilde{m}_1) and (F_A, \tilde{m}_2) are $\tilde{m} - T_{\frac{1}{2}}^*$ -spaces. This is shown in Example 4.9.

Example 4.8 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m_1}, \tilde{m_2})$ be a soft biminimal space where $U = \{u_1, u_2\}, A = \{x_1, x_2\}, F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}, \tilde{m_1} = \{F_{\emptyset}, F_{A_4}, F_{A_6}, F_A\}$ and $\tilde{m_2} = \{F_{\emptyset}, F_{A_4}, F_{A_5}, F_{A_6}, F_A\}$. Then $(F_A, \tilde{m_1})$ is not $\tilde{m} - T_{\frac{1}{2}}^*$ -space but $(F_A, \tilde{m_1}, \tilde{m_2})$ is $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^*$ -space.

Example 4.9 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $U = \{u_1, u_2\}, A = \{x_1, x_2\}, F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}, \tilde{m}_1 = \{F_{\emptyset}, F_{A_4}, F_{A_5}, F_{A_6}, F_A\}$ and $\tilde{m}_2 = \{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_3}, F_A\}$. Then both (F_A, \tilde{m}_1) and (F_A, \tilde{m}_2) are $\tilde{m} - T_{\frac{1}{2}}^*$ -space but $(F_A, \tilde{m}_1, \tilde{m}_2)$ is not $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^*$ -space.

Definition 4.10 A soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is said to be pairwise $\tilde{m} - T_{\frac{1}{2}}$ -space if it is both $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}$ and $\tilde{m}_{(2,1)} - T_{\frac{1}{2}}$ -space.

Definition 4.11 A soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is said to be pairwise $\tilde{m} - T_{\frac{1}{2}}^*$ -space if it is both $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^*$ and $\tilde{m}_{(2,1)} - T_{\frac{1}{2}}^*$ -space.

Proposition 4.12 If $(F_A, \tilde{m_1}, \tilde{m_2})$ is pairwise $\tilde{m} - T_{\frac{1}{2}}$ -space, then it is pairwise $\tilde{m} - T_{\frac{1}{2}}^*$ -space but not conversely.

Example 4.13 In Example 4.5. Then $(F_A, \tilde{m_1}, \tilde{m_2})$ is also $\tilde{m}_{(2,1)} - T_{\frac{1}{2}}^*$ and therefore it is pairwise $\tilde{m} - T_{\frac{1}{2}}^*$ -space. But $(F_A, \tilde{m_1}, \tilde{m_2})$ is not a pairwise $\tilde{m} - T_{\frac{1}{2}}$ -space, since it is not a $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}$ -space.

Definition 4.14 A soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is said to be an $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ space if every $sg\tilde{m}_{(i,j)}$ -closed set is $sg^*\tilde{m}_{(i,j)}$ -closed.

Proposition 4.15 If $(F_A, \tilde{m_1}, \tilde{m_2})$ is $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}$ -space, then it is a $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -space.

Remark 4.16 The converse of the above Proposition 4.15 is not trure. The following example supports our claim.

Example 4.17 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $U = \{u_1, u_2\}$, $A = \{x_1, x_2\}$, $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$, $\tilde{m}_1 = \{F_{\emptyset}, F_{A_9}, F_{A_{12}}, F_A\}$ and $\tilde{m}_2 = \{F_{\emptyset}, F_{A_6}, F_{A_9}, F_{A_{12}}, F_A\}$. Then $(F_A, \tilde{m}_1, \tilde{m}_2)$ is $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^{**}$ -space but not $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}$ -space.

Remark 4.18 $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ and $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -spaces are independent as seen from the following examples.

Example 4.19 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $U = \{u_1, u_2\}, A = \{x_1, x_2\}, F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}, \ \tilde{m}_1 = \{F_{\emptyset}, F_{A_2}, F_A\} \ \text{and} \ \tilde{m}_2 = \{F_{\emptyset}, F_{A_2}, F_{A_9}, F_A\}.$ Then $(F_A, \tilde{m}_1, \tilde{m}_2)$ is $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^*$ -space but not $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^{**}$ -space.

Example 4.20 Let us consider the soft subsets of F_A that are given in Example 3.2. Let $(F_A, \tilde{m}_1 \tilde{m}_2)$ be a soft biminimal space where $U = \{u_1, u_2\}, A = \{x_1, x_2\}, F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}, \tilde{m}_1 = \{F_\emptyset, F_{A_{13}}, F_{A_{14}}, F_A\}$ and $\tilde{m}_2 = \{F_\emptyset, F_{A_3}, F_A\}$. Then $(F_A, \tilde{m}_1, \tilde{m}_2)$ is $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^{**}$ -space but not $\tilde{m}_{(1,2)} - T_{\frac{1}{2}}^{**}$ -space.

Theorem 4.21 A soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ is $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}$ -space if and only if it is both $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ and $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ -space

Proof: Suppose that $(F_A, \tilde{m}_1, \tilde{m}_2)$ is an $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}$ -space. Then by Proposition 4.3 and Proposition 4.15, $(F_A, \tilde{m}_1, \tilde{m}_2)$ is $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ and $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -space. Conversely, suppose that $(F_A, \tilde{m}_1, \tilde{m}_2)$ is both $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^*$ and $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$. Let F_B be a $\mathrm{sg}\tilde{m}_{(i,j)}$ -closed set of $(F_A, \tilde{m}_1, \tilde{m}_2)$. Since $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -space, F_B is a $sg^*\tilde{m}_{(i,j)}$ -closed set. Since $(F_A, \tilde{m}_1, \tilde{m}_2)$ is an $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -space, F_B is soft m_j -closed set of $(F_A, \tilde{m}_1, \tilde{m}_2)$. Therefore, $(F_A, \tilde{m}_1, \tilde{m}_2)$ is an $\tilde{m}_{(i,j)} - T_{\frac{1}{2}}^{**}$ -space. \square

References

- [1] C. Boonpok, Biminimal Structure Spaces, International Mathematical Forum, 15(5)(2010), 703-707.
- [2] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, (35)(1986), 19-28.
- [3] R.Gowri, S.Vembu, Soft minimal and soft biminimal spaces, Int Jr. of Mathematical Science and Appl., Vol. 5, no.2, (2015), 447-455.
- [4] R.Gowri, S.Vembu, Soft g-closed Sets in Soft Biminimal Spaces, International Journal of Mathematics And its Applications, (5)(2017), 361-366.
- [5] B.M Ittanagi, Soft Bitopological Spaces, International Journal of Computer Applications, (107)(7)(2014).
- [6] J.C Kelly, Bitopological Spaces, Proc. London Math. Soc., (13)(1963), 71-81. 9

- [7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2)(19)(1970), 89-96.
- [8] H. Maki, K.C Rao and A. Nagoor Gani, On generalized semi-open and preopen sets, Pure Appl. Math. Sci., (49)(1999), 17-29.
- [9] D.A Molodtsov, Soft Set Theory First Results. Comp. and Math. with App., (37)(1999), 19-31.
- [10] T. Noiri and V. Popa, A generalized of some forms of g-irresolute functions, European J. of Pure and Appl. Math., (2)(4)(2009), 473-493.
- [11] T. Noiri, A uni_ed theorey for certain modi_cation of generalized form of continuity under minimal condition, Mem. Fac. Sci. Kochi. Univ. ser. A. Math., (22)(2001), 9-18.
- [12] T. Noiri, A uni_ed theory for certain modi_catins of generalized closed sets, International J. General Topology, 1 (2008), 87-99.
- [13] V. Popa, T. Noiri, On M-continuous functions, Anal. Univ.Dunarea de Jos-Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, (18)(23)(2000), 31-41.
- [14] M. Shabir, M. Naz, On soft topological spaces, Comput.Math. Appl.,(61)(2011), 1786-1799.
- [15] M. Sheik John and P. Sundaram, g_-closed sets in bitopological spaces, Indian J. Pure Appl. Math., (35)(1)(2004), 71-80.
- [16] C. Viriyapong, M. Tunapan, W. Rattanametawee and C. Boonpok, Generalized m-Closed Sets in Biminimal Structure Spaces Int. Journal of Math. Analysis, (5)(7)(2011), 333-346.

R. Gowri. "Soft g*-Closed Sets in Soft Biminimal Spaces." IOSR Journal of Mathematics (IOSR-JM), vol. 13, no. 4, 2017, pp. 33–42.

DOI: 10.9790/5728-1304023342 www.iosrjournals.org 42 | Page