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Abstract:Plants, animals and humans live in close association with microbial organisms. Increasingly, 

biologists have come to appreciate that microbes make up an important part of an organism's phenotype. This 

microbial community contains a unique complexity that makes it difficult to study their diversity. However, for 

many questions on the structure of the microbial community one only needs to know the relative order of 

diversity among samples rather than the total diversity. Unfortunately the culture of microorganisms can be 

complex but this has prompted the development of new scientific methodologies for their study. One of these 

methodologies is metagenomics. An important problem in metagenomics is measuring the dissimilarity between 

distributions of features, such as taxons or groups. The focus of this note is the proposal of a new method based 

on using Bhattacharyya distance and establishing a priori groups using the partitioning around medoids 

algorithm (PAM). The results reveal a good reduction in the size of the dataset and an interesting way of 

revealing possible subgroups “a priori” or communities among the microorganisms that make up the analyzed 

sample. 
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I. Introduction 
The gut microbiota is home to more than 99% of the genetic information in humans  and although there 

is an important connection between the gut microbiome and metabolism, immune health, disease, autism, 

allergies, and obesity, it remains a largely unexplored area of science [1]. Microbial communities contain a 

unique complexity that makes it difficult to study their diversity. However, for many questions on the structure 

of the microbial community one only needs to know the relative order of diversity among samples rather than 

total diversity. Unfortunately the culture of microorganisms can be complex, prompting the development of new 

scientific methodologies for their study. One of these methodologies is metagenomics. 

Metagenomics (also referred to as environmental and community genomics) is the study of genetic 

(genomic analysis of microorganisms) material recovered directly from environmental samples by direct 

extraction and cloning of DNA from an assemblage of microorganisms [2]. In any biological system 

information is ultimately linked to the DNA sequences present, and microbial communities are no exception. In 

microbial communities we used „word‟ frequency profiles of operational taxonomic units (OTUs) as a proxy for 

the composition of the bacterial community at the genomic level, thus avoiding the need to define bacterial 

species or taxonomic groups [3]. 

The broad field of metagenomics may also be referred to as environmental genomics, ecogenomics or 

community genomics. While traditional microbiology and microbial genome sequencing and genomics rely 

upon cultivated clonal cultures, early environmental gene sequencing cloned specific genes (often the 16S rRNA 

gene) to produce a profile of diversity in a natural sample [4]. 

The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured 

microorganisms represent the vast majority of organisms in most environments on earth. This evidence was 

derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that 

avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life [2]. 

In a very recent study [3], we addressed the question of how to explore diversity (species richness) and 

complexity (frequency distribution) in microbial communities directly from a limited amount of metagenomic 

data and how to characterize communities efficiently. For this purpose we built the library MetagenOutLDA.   

Next generation sequencing and other recent techniques applied to microbial metagenomics have 

transformed the study of microbial diversity. Microbial metagenomics, or sequencing of DNA extracted from 

microbial communities, provides a means to determine what organisms are present without the need for 



A priori groups based on Bhattacharyya distance and partitioning around medoids algorithm (PAM).. 

DOI: 10.9790/5728-1303032432                                        www.iosrjournals.org                                      25 | Page 

isolation and culturing, which can only be used for less than 1% of the species in a typical environment [5]. In 

many cases the number of groups or communities living together in the samples is unknown, although we would 

like to have an exploratory method that would allow us to establish a series of communities by types of taxa or 

samples for later study. The development of statistics to extract ecologically meaningful information from these 

datasets has not developed as quickly as the metagenomic techniques. In particular, tools that can account for 

the discrete nature, sparsity, and variable size of these datasets are lacking [5]. 

The main objective of this paper is to present a new exploratory multivariate method to establish a 

priori a classification of the microbial communities directly from the  metagenomics matrices. For this purpose 

we will use an example to illustrate how the method works in practice. 

 

II. Material and Methods 
II.I. R package 

All the statistical methods proposed in this work were developed in the computer GNU project: R. R is 

a widely used free software environment and programming language for statistical computing and graphics. It 

compiles and runs on a wide variety of UNIX platforms, Windows and MacOS, and is supported by the R 

Foundation for Statistical Computing [6]. The R language is widely used among statisticians and data scientists 

for developing statistical software and data analysis. The popularity of R has increased substantially in recent 

years. 

 

The source code for the R software environment is written primarily in C, Fortran and R. R is freely available 

under the GNU General Public License on https://www.r-project.org/[6]. 

 

II.II. Reported cases 

The data analyzed corresponds to a metagenomics matrix from matrix yy4 (see TABLE 1) of the R 

package matR (metagenomics analysis tools for R) which is an analysis client for the MG-RAST metagenome 

annotation engine, part of the US Department of Energy (DOE) Systems Biology Knowledge Base (KBase). 

See: https://github.com/MG-RAST/matR BIOM annotation data for certain metagenomes and projects. The 

matrix yy4 is an object of class biom for demonstration purposes, containing annotation data for certain sets of 

metagenomes. 

 

Table 1: Metagenomics matrix yy4 used as example from library matR 

 num Taxon (OTU) 
sample 
mgm4447102.3 

sample 
mgm4447103.3 

sample 
mgm4447192.3 

sample 
mgm4447943.3 

1 Acetobacteraceae 63 140 27 11 

2 Acholeplasmataceae 11 37 0 75 

3 Acidaminococcaceae 160 1025 151 2172 

4 Acidimicrobiaceae 0 0 4 0 

5 Acidithiobacillaceae 0 67 6 0 

6 Acidobacteriaceae 0 38 13 0 

7 Acidothermaceae 158 26 55 113 

8 Actinomycetaceae 15561 3511 4139 14627 

9 Aerococcaceae 260 631 247 694 

10 Aeromonadaceae 109 401 124 95 

11 Alcaligenaceae 411 880 174 144 

12 Alcanivoracaceae 37 255 28 5 

…   …  …  …  …  …  

 266 Xanthomonadaceae 311 543 115 44 

To use the matrix yy4, first load package matR on R package and use it by means of: >library(matR) >yy4 

 

Table 2: Theoretical structure of M (metagenomics matrix input) 
num Taxon (OTU) Sample 1 Sample 2 Sample jth Sample n  

1 OTU.1 m11 m12 ⋯ m1n 𝑁1· 

2 OTU.2 m21 m22 ⋯ m2n 𝑁2· 

⋮ OTU ith ⋮ ⋮ mij ⋮ ⋮ 
k OTU.k mk1 mk2 ⋯ mkn 𝑁𝑘· 

  𝑁·1 𝑁·2 ⋯ 𝑁·𝑛  N 

 

TABLE 2 shows the theoretical composition of a metagenomic matrix (𝑴) (k rows: taxon or OTU 

(operational taxonomic unit) and n columns: samples). This matrix format is used for different statistical 

analyses in this paper. M shows the samples in the columns (in our example, see TABLE 1, n=4 samples) and 

the taxa identified by the molecular method (16S metagenomics) or the organism identified (OTU: operational 

taxonomic unit, in our example, see TABLE 1, k=266) in the rows. The dimension of M is: 

 

https://www.r-project.org/
https://github.com/MG-RAST/matR
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  Dim(M)= k∙n       (1) 

 

As a result of metagenomic analysis, M can be very large and usually has few samples and thousands of OTUs, 

most with small frequencies or 0 (sparse matrix).  

 

II.III.. Data codification  

Each sample is represented by one k-dimensional random vector𝑋·𝑗 ; 𝑋·𝑗 = (𝑚1𝑗 , 𝑚2𝑗 , … ,𝑚𝑘𝑗 ), where 

𝑚𝑘𝑗  represents the number (frequency) of the 𝑗𝑡ℎ sample at the 𝑘𝑡ℎ OTU. In the same manner the n-dimensional 

random vector 𝑋𝑖· can be defined. 

An important issue is the probability distribution underlying the matrix M and this was studied in the article 

“Bacterial Metagenomics: Associated Probability Distributions and Profile Analysis” [7] in which different 

distribution probability models such as multinomial, Diritchlet-multinomial and their combinations were tested.  

The distribution of each random vector 𝑋𝑖· and 𝑋·𝑗  can be fitted to a multinomial distribution,  

 

𝑋·𝑗~𝑀𝑁 𝑁·𝑗 , 𝜃1𝑗 , … , 𝜃𝑘𝑗  ; ∀𝑗 = 1, . . , 𝑛        with  𝜃𝑖𝑗 = 1   ∀𝑗𝑘
𝑖=1   

 (2) 

𝑋𝑖·~𝑀𝑁 𝑁𝑖·,  𝜃 𝑖1, … , 𝜃 𝑖𝑛 ; ∀𝑖 = 1, . . , 𝑘     with  𝜃 𝑖𝑗 = 1   ∀𝑖𝑛
𝑗=1   

 (3) 

 

The multinomial distribution is a multivariate generalization of the binomial distribution, where  

𝑋𝑖𝑗 ~𝐵𝑖𝑛 𝑚𝑖𝑗 , 𝜃𝑖𝑗  ; 1 ≤ 𝜃𝑖𝑗 ≤ 1; ∀𝑗 = 1, . . , 𝑛;  ∀𝑖 = 1, . . , 𝑘 

e.g. if we consider the partition of all sample space Ω𝑗   the j-sample space in k parts: 

𝐴1𝑗  𝐴2𝑗  … 𝐴𝑘𝑗  

 

One individual selected randomly has the probability 𝜃𝑘𝑗  of belonging to the taxon 𝐴𝑘𝑗  in the above partition: 

 

𝑃 𝐴1𝑗 = 𝜃1𝑗

𝑃 𝐴2𝑗 = 𝜃2𝑗

⋮
𝑃 𝐴𝑘𝑗  = 𝜃𝑘𝑗 

 
 

 
 

 𝜃𝑖𝑗 = 1

𝑘

𝑖=1

;  ∀𝑗 = 1, . . , 𝑛 

 

If we wish to calculate for a sample j the probability of having 𝑁𝑗 . individuals,  𝑚1𝑗  belongs to class 𝐴1𝑗 , 𝑚2𝑗  

belongs to class 𝐴2𝑗 ,...,𝑚𝑘𝑗  belongs to class 𝐴𝑘𝑗 , with the restriction    

 𝑚𝑖𝑗 = 𝑁𝑗 .    ,
𝑘
𝑖 = 1 ∀𝑗 = 1, . . , 𝑛     (4) 

Using the multinomial function of density (mass function) we can calculate this probability, 𝑀𝑁(𝑁𝑗 .; 𝜃𝑗 =

(𝜃1𝑗 , 𝜃2𝑗 , … , 𝜃𝑘𝑗 )): 

𝑃  𝐴1𝑗 = 𝑚1𝑗 ∩  𝐴2𝑗 = 𝑚2𝑗 ∩ … ∩  𝐴𝑘𝑗 = 𝑚𝑘𝑗   =
𝑁·𝑗 !

𝑚1𝑗 !𝑚2𝑗 !…𝑚𝑘𝑗 !
𝜃

1𝑗

𝑚1𝑗
· 𝜃

2𝑗

𝑚2𝑗
· … · 𝜃

𝑘𝑗

𝑚𝑘𝑗
(5) 

where  0 ≤ 𝜃𝑖𝑗 ≤ 1 for all i in 1 to k, and 𝜃1𝑗 + ⋯ + 𝜃𝑘𝑗 = 1, and if k = 1 the mass function reduces to the 

binomial, ∀𝑗 = 1, . . , 𝑛. 

 

 

II.IV.Statistical analysis 

A powerful multivariate methodology was used in this study based on the work of Rios et al. [8] and 

this is the first time that it has been combined with metagenomics data. Fig. 1 shows, schematically, how the 

different statistical procedures are used to obtain a classification according to different OTUs.These processes 

are discussed further below. 
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Figure 1: Algorithm of the data management and statistical processes used during this study to revealing 

possible subgroups “a priori” or communities among the microorganisms. 

 

II.IV.I. Calculation of the Bhattacharyya distance 

Let p(i) and p’(i) represent two multinomial populations, each consisting of N classes with respective 

probabilities 𝑝 𝑖 = 1 , … , 𝑝 𝑖 = 𝑁  and 𝑝′ 𝑖 = 1 , … , 𝑝′ 𝑖 = 𝑁 . Since 𝑝 𝑖  and 𝑝′ 𝑖  represent probability 

distributions,  𝑝(𝑖) =  𝑝′(𝑖) =𝑁
𝑖 = 1

𝑁
𝑖 = 1 1. The Bhattacharyya distance [9] (or measure or coefficient of 

Bhattacharyya, BC) is a divergence-type measure between distributions, defined as: 

 

𝐵𝐶 𝑝, 𝑝′ =   𝑝(𝑖)𝑝′(𝑖)𝑁
𝑖 = 1    (6) 

 

The Bhattacharyya distance has a simple geometric interpretation [10] as the cosine of the angle between the N-

dimensional vectors   𝑝 1 , … ,  𝑝 𝑁  
𝑇

and    𝑝′ 1 , … ,  𝑝′ 𝑁  
𝑇
. Thus, if the two distributions are 

identical, we have: 

 

cos 𝜃 =   𝑝(𝑖)𝑝′(𝑖)𝑁
𝑖 = 1 =   𝑝(𝑖)𝑝(𝑖)𝑁

𝑖 = 1 = 𝑝(𝑖)𝑁
𝑖 = 1 =1   (7) 

 

Consequently,𝜃 = 0. Furthermore, based on Jensen‟s inequality [11] we have: 
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0 ≤ 𝐵𝐶 p, p′ =  𝑝(𝑖)𝑝′(𝑖)𝑁
𝑖 = 1 =  𝑝(𝑖)𝑁

𝑖 = 1  
𝑝 ′(𝑖)

𝑝(𝑖)
≤   𝑝′ 𝑖 𝑁

𝑖 = 1 = 1 (8) 

 

A potentially undesirable property of the distance is that it does not impose a metric structure since it violates at 

least one of the distance metric axioms [12]. 

 

In the problem that concerns us, each sample of the matrix M (see TABLE 1 and 2) was assigned to the vector  

𝑥𝑖 =  𝑥𝑖1 , … , 𝑥𝑖𝑛   a realization of the random vector  𝑥𝑖 , defined as: 

 

𝑥𝑖 =  𝑥𝑖1 =
𝑚 𝑖1

𝑁1.
, 𝑥𝑖2 =

𝑚 𝑖2

𝑁2.
, … , 𝑥𝑖𝑛 =

𝑚 𝑖𝑛

𝑁𝑛 .
 ; ∀𝑖 = 1, . . , 𝑘  (9) 

 

where 𝑥𝑖𝑗  is the fraction per unit of the jth sample for the ith OTU, meaning that in our example the following 

restriction is imposed: 𝑥1𝑗 + 𝑥2𝑗 + ⋯ +𝑥266𝑗 = 1 ; ∀𝑗 = 1, . . , 𝑛. 

If we consider 𝑥𝑖as a random variable distributed as a multinomial with parameters   𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖4 , the 

distance between the OTU k represented by  𝑃𝑘 =   𝑥𝑘1 , 𝑥𝑘2 , … , 𝑥𝑘4 and the OTU k’ represented by𝑃𝑘′ =
 𝑥𝑘′1, 𝑥𝑘′2 , … , 𝑥𝑘′4 is given by𝑑, where d is the Bhattacharyya distance [9]: 

 

𝑑𝑘𝑘 ′ = 𝑎𝑟𝑐𝑐𝑜𝑠   𝑥𝑘𝑗 𝑥𝑘 ′𝑗
𝑛=4
𝑗=1       (10) 

 

To calculate the Bhattacharyya distance we used the following R script: 

 
> Q <- sqrt(M) #M is the normalized metagenomics matrix yy4 from library matR. 

> BC <- Q%*%t(Q) 
> BC <- ifelse(BC>1., 1., BC) 

> D2B <- acos(BC) 

> D2B # Bhattacharyya matrix of distances 

 

II.IV.II. Multidimensional scaling 

Multidimensional scaling (MDS) is a means of visualizing the level of similarity of individual cases in 

a dataset. It refers to a set of related ordination techniques used in information visualization, in particular to 

display the information contained in a distance matrix. An MDS algorithm aims to place each object in N-

dimensional space such that the between-object distances are preserved as well as possible. Each object is then 

assigned coordinates in each of the N dimensions [13]. 

Based on the Bhattacharyya distances obtained, a MDS was performed. The distance matrix between 

OTUs, 𝐷 =  𝑑𝑘𝑘 ′ 
266×266

 , 𝑑𝑘𝑘 ′ = 𝑑 𝑃𝑘 , 𝑃𝑘 ′ is a distance between Pk’, Pk’ OTUs k,k’ respectively. 𝐴 =

 𝑎𝑘𝑘 ′ 
266×266

 , 𝑎𝑘𝑘 ′ = −
1

2
𝑑
𝑘𝑘 ′
2 is a measure of the similarity 𝐻 =  ℎ𝑘𝑘 ′ 

266×266
 ,𝐻 = 𝐼 − 

1

266
𝐸𝐸′where  I is an 

identity matrix of size 266x266.  E=(1,…,1)’ is a column vector of size 266.B=HAH is the sample matrix of 

covariance of the values of A. Their eigenvalues are: 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟 ≥ 0 ≥  𝜆𝑟+1 ≥ ⋯ ≥ 𝜆266  (real 

numbers since B is symmetrical) and eigenvectors of the matrix B were calculated. 

 

𝐵 = 𝑇𝐷𝜆𝑇 =  𝑇𝐷
𝜆

1
2   𝐷

𝜆

1
2 𝑇 =  𝑇𝐷

𝜆

1
2   𝑇𝐷

𝜆

1
2    (10) 

 

𝐷𝜆 = 𝑑𝑖𝑎𝑔 𝜆1 , … , 𝜆266  (11) 

 

where the ith column of T is the ith eigenvector associated with  λi . If   

 

𝑌 = 𝑇𝐷
𝜆

1
2        (12) 

 

the rows of Y are the coordinates of 266 points (Q1,…,Q266 ) on R
266 

. If B is a non-negative definite matrix: 

 

𝑑 𝑄𝑘 , 𝑄𝑘 ′ = 𝑑 𝑃𝑘 , 𝑃𝑘 ′        (13) 

 

If B is not a non-negative definite matrix, we obtain pure imaginary values when calculating   𝐷
𝜆

1
2     

and the rows of Y are in the form:  

 

 𝑦𝑘1 , … , 𝑦𝑘𝑟 ,  −1𝑦𝑘𝑟+1, … ,  −1𝑦𝑘266    (14) 
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If  ).../()...( 2

266

2

1

22

2

2

1   r  is a sufficiently large value (greater than 0.9) we can consider 

the rows of Y in the form: 

1( ,..., ,0,...,0)l lry y       (15) 

 

Then we performed a MDS analysis with the 266 points (Q1,…,Q266). This method allowed us to 

construct a diagram showing the relationships between a number of objects. The diagram is a small p-

dimensional space, generally p=2 or p=3. The main purpose is to reduce data from a large number of variables 

to fewer components, so making it possible to view the similarities and differences between the OTUs studied 

([13],[14],[15]). 

All analyses were performed using the function cmdscale() from the R package HSAUR as reported by 

Venables & Ripley [15] for metric MDS.  

 

II.IV.III.Partitioning Around Medoids (PAM) algorithm 

Cluster analysis aims to group a set of objects (e.g. OTUs (see TABLE 1 and 2) from a matrix M) in 

such a way that objects in the same group (called a cluster) have a high degree of similarity in the same cluster. 

There are different methods of clustering and one of the most popular is the partitioning method. This requires 

the analyst to specify the number of clusters to extract. Nowadays many disciplines are using these kinds of 

algorithms to separate datasets into groups in an automated way, whilst still achieving good quality results.  

The clustering process is not a universal process because there are many groups of datasets, for some of 

which the kind of metric used is relevant, whereas for others the entities that represent each cluster are more 

interesting. Like dataset groups there are many clustering algorithms and each one tries to take advantage of the 

data type, with each one being more suited for a specific kind of data. 

This section will explain a little more about the Partitioning Around Medoids (PAM) algorithm, 

showing how the algorithm works, its parameters and what they mean, an example of a dataset, how to execute 

the algorithm, and the result of that execution with the dataset as input. 

The PAM algorithm was developed by Leonard Kaufman and Peter J. Rousseeuw [16],[17] in 1987, 

and this algorithm is very similar to K-means, mostly because both are partitional algorithms. This algorithm is 

described in the entry on Partitioning Around Medoids (PAM) Algorithm [18] and the mathematical description 

of the algorithm adapted to the example at hand is reproduced in part. 

PAM breaks the dataset into groups (clusters), by trying to minimize the error. However, PAM works 

with medoids, which are an entity of the dataset that represents the group in which it is inserted, and K-means 

works with centroids, which are an artificially created entity that represent its cluster. A nice property is that 

PAM allows clustering with respect to any specified distance metric like the Bhattacharyya distance, 𝑑𝑘𝑘 ′(see 

(10). In addition, the medoids are robust representations of the cluster centers in the reduced space, which is 

particularly important in the common context that many elements do not belong well to any cluster, so we 

consider that it is a good method to use in the genetic field. PAM computes medoids for each cluster. PAM is 

computationally more costly than K-means since it requires pairwise distance calculations in each cluster. 

The PAM algorithm partitions the dataset of n objects into p clusters, where both the dataset and the 

number p is an input of the algorithm. This algorithm works with a matrix of dissimilarity, whose goal is to 

minimize the overall dissimilarity between the representatives of each cluster and its members. The algorithm 

uses the following model to solve the problem: 

𝐹 𝑥 = min⁡(  𝑑 𝑘, 𝑘′ 𝑧𝑘𝑘 ′
𝑛
𝑘′=1

𝑛
𝑘=1 )   (16) 

Subject to:  

1.  𝑧𝑘𝑘 ′
𝑛
𝑖=1 = 1, 𝑗 = 1,2, … , 𝑛 

2. 𝑧𝑖𝑗 ≤ 𝑦𝑖 , 𝑖, 𝑗 = 1,2, … , 𝑛 

3.  𝑦𝑖
𝑛
𝑖=1 = 𝑝, 𝑝 = 𝑛𝑢𝑚 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

4. 𝑦𝑖 , 𝑧𝑖𝑗 ∈  0,1 , 𝑖, 𝑗 = 1,2, … , 𝑛 

 

where F(x) is the main function to minimize, d(k,k’) is the dissimilarity measurement between the entities k 

and k’ (see (10), and zij is a variable that ensures that only the dissimilarity between entities from the same 

cluster will be computed in the main function. The other expressions are constraints that have the following 

functions: (1.) ensures that every single entity is assigned to one cluster and only one cluster, (2.) ensures that 

the entity is assigned to its medoid that represents the cluster, (3.) ensures that there are exactly p clusters and 

(4.) lets the decision variables assume just the values of 0 or 1. 

The PAM algorithm can work over two kinds of input, the first is the matrix representing every entity 

and the values of its variables, and the second is the dissimilarity matrix; in the latter the user can provide the 
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dissimilarity directly as an input to the algorithm, instead of the data matrix representing the entities. Either way 

the algorithm reaches a solution to the problem, and in a general analysis the algorithm proceeds this way: 

 

Build phase: 
1. Choose p entities to become the medoids, or if these entities were provided use them as the medoids; 

2. Calculate the dissimilarity matrix if it was not supplied; here it is the Bhattacharyya distance,  𝑑𝑘𝑘 ′(see (10) 

3. Assign every entity to its closest medoid. 

Swap phase: 
4. For each cluster determine whether any of the entities of the cluster lower the average dissimilarity 

coefficient; if that is the case select the entity that lowers this coefficient the most as the medoid for this 

cluster; 

5. If at least one medoid has changed go to (3), otherwise end the algorithm. 

 

III. Results 
The Battacharyya distance was calculated over matrix M (see Table 1; Table 2 describes its structure) 

using the mathematical process developed in section 2.3.1 (see (9), (10) and (11)). MDS was performed using 

the steps described in section II.IV.II. 

The MDS produced a two-dimensional solution and the main end points found are summarized in 

Table 3. The Mardia percentages accounting for the first two axes were 77.7% and 13.8% and these components 

explained more than 91.5% of the total variation. The two-dimensional coordinates and the display obtained are 

shown in Table 4 and Fig. 2. The first component reflects the relative abundance between samples, indicating 

the general level of abundance of each OTU and sample. On the left-hand side of Fig. 2 are the OTUs with a 

low level of relative abundance in all samples. The first component was clearly positive (indicating highest 

relative abundance and importance of OTUs) in 15 OTUs (Streptococcaceae, Prevotellaceae, Veillonellaceae, 

…). The second component reflects only 13.8% of the variance, and we think this reflects changes in the 

composition of the samples (sample variability): on the positive axes we find the less variables samples and on 

the negative axes the more variable samples.  

 

Table 3: Eigenvalues, criterion of Mardia  and  inertia percentages 

Eigenvalues (𝜆𝑖) for  all axes 

𝜆1 = 3.752463e+00 

𝜆2 = 6.658428e-01 

𝜆3 = 2.712456e-01 
… 

𝜆266 = -5.270244e-02 

Criterion of Mardia for the first two axes 

 

𝜆1
2 + 𝜆2

2

 𝜆𝑖
2266

𝑖=1

= 0.9944883 

Inertia percentages  for the first two axes 
|𝜆1| + |𝜆2|

  𝜆𝑖  
266
𝑖=1

= 0.9145867 

Inertia percentages  for the first axe 

 
|𝜆1|

  𝜆𝑖  
266
𝑖=1

= 0.7767577 

Inertia percentages  for by the second axe 

 
|𝜆2|

  𝜆𝑖  
266
𝑖=1

= 0.1378291 

 

Table 4: Coordinates of the OTUs used in the MDS analysis 

 
Coordinate 1 Coordinate 2 

OTU1 -0.029165151 0.010939870 

OTU2 -0.045212593 -0.009269291 

OTU3 0.044075543 -0.048979870 

OTU4 -0.060191831 0.002857603 

OTU5 -0.05180509 0.007561300 

… … … 

OTU266 0.007561399 0.02163315 

 

All of these results can be complemented by the heat-map in Fig. 3, which is a graphical representation 

of data (OTUs and samples) where the variation of the abundance (frequency) contained in the matrix M is 

represented as the intensity of color. The heat-map shows the most frequent taxons in the upper part and the less 

frequent taxons in the bottom part, but only those that have an abundance higher than 0.5%. 
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Figure 2. Two-dimensional graphic display of matrix matr based on metric Multidimensional Scaling and 

the use of Battacharyya distance. 

 

 
Figure 3:  Heat map of the percentage of OTUs and samples (X1, X2, X3, X4 and their mean). The intensity of 

the color indicates a greater abundance. Only those OTUs> 0.5% (right list) 

 

 
Figure 4: On the representation made in Figure 4, 3 a priori groups were obtained using the PAM algorithm 
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Fig. 4 is the PAM analysis performed using the cluster algorithm described in section 2.3.3. PAM 

automatically divided the 206 OTUs into three groups which overall account for 61.4%  good classification: 

78.9% for the first group, 26.2% for the second group and 2.3% for the third group. Three is the number of “a 

priori” groups that we can find in this sample, because this number gives the best classification in accordance 

with the criteria. This number of groups was established using the silhouette method,  a method of interpretation 

and validation of consistency within clusters of data; the silhouette provides a succinct graphical representation 

of how well each object lies within its cluster (Rousseeuw, 1986). In the other cases the percentage of good 

classification was 57.5% for two groups, and 47.6% for four groups.  

 

IV. Conclusion 
Measurement of diversity is important for understanding community structure and dynamics, but has 

been particularly challenging for microbes. Microbiologists have recently discovered that ecologists and 

evolutionary biologists studying the diversity of macroorganisms have developed a range of approaches to 

analyze the environmental diversity patterns, many of which can be applied to microorganisms. Basically the 

analysis of biodiversity that is carried out in metagenomics is fundamentally based on the analysis used in 

classical ecology, involving richness, abundance, alpha diversity and beta diversity and often incorporating 

concepts such as phylogenetic relationships and taking into account how the samples were obtained and the 

technical noise. 

The focus of this note was the proposal of a new method (used with this type of data for the first time) 

based on using Bhattacharyya distance, MDS and establishing a priori groups using the partitioning around 

medoids algorithm (PAM). The results revealed a good reduction in the size of the dataset and an interesting 

way of revealing possible subgroups “a priori” or communities among the microorganisms that make up the 

analyzed sample. 

These groups are found “automatically” once studied and validation of the method by experts in 

metagenomics would help advance the development of new statistical multivariate methods to extract 

ecologically meaningful information from these datasets, including characterizing the biodiversity of the 

microbiome, finding the number of communities (subpopulations) that interact in the sample and observing the 

behavior and complexity of the microorganisms in the sample analyzed. 
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