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Abstract:Generalist species Predator – Prey Model and Maximum sustainable Yield have been discussed in 

this study.Both prey and predator populations are considered to follow logistic law of growth. The model 

possibly concerns with the prey population as Tilapia fish and the predator population as Whale 

fish.Furthermore, intra – specific competition among predator population is also included.The conversion 

efficiency of the predator is proportional to its capturing efficiency that makes the model more real and 

practical. Theorems on global stability of interior equilibrium points and non-existence of limit cycle are proved 

applying Bendixson - Dulac criteria and the Lyapunov theory.  The perturbation analysis, leading order systems 

and stability of the interior equilibrium point are included. Prey harvesting, predator harvesting and maximum 

sustainable yield have been discussed and the results are supported by numerical simulations. 
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I. Introduction 
Unlike specialist predator-prey model, generalist species predator-prey model is a model in which the 

predatorhasother alternative sources offood [6]. The present system, containing two species:predator and prey, is 

an extension of the classical predator prey model [2, 10]. Holling Type I predator response function and intra-

specific competition among predatorshave been considered and included in the model. 

The capture efficiency of predator population is proportional to its conversion efficiency.The proportionality 

constant is considered to be a constant as one unit in order to make the model simpleas it is described in the 

existing model system [1].But, in the present study the proportionality constant is considered to be a variable 

varying in the open interval 0, 1  and thus the model is made more realistic.The proposed model has seven 

dimensioned parameters while the corresponding scaled model has four dimensionless parameters. Whale fish 

and Tilapia fish could be examples that satisfy the proposed model of predator and prey respectively. 

In this study uniqueness, positivity and boundedness of solution of the model, stability analysis of the co-

existence equilibrium points,prey and predator harvestingstogether with intra-specific competition among 

predators themselvesand numerical simulations of the models are presented and discussed.Global stability of 

interior equilibrium points of the models are discussedapplying Bendixson – Dulac criteria and Lyapunov 

theory. Moreover non – existence of limit cycle in the positive quadrant is justified. We also verified in the 

leading order system that the trivial equilibrium point is unstable saddle node and is also a degenerate case. 

 

II. The model 
In this section, thealready existing and the newly proposed models have beenintroduced and briefly 

described. The proposed model is designed and developed having itsbase on the existing model [1]. The present 

modelnot only overcomes draw backs of the existing model but alsocorrectly addresses a realistic situation. Of 

course, the classical predator prey model forms a basis for species interaction systems and remains as a strong 

pillar reference for researchers working in this area.  

 

2.1 The Existing Model 

The specialist predator prey model with the inclusion of intra – specific competitionsamong predators 

themselvesis given in [1] and can be expressed as 

𝑑𝑥 𝑑𝑡 = 𝑟 𝑥  1 −  𝑥 𝑘   − 𝑝 𝑥 𝑦 (1) 

𝑑𝑦 𝑑𝑡 = −𝑑 𝑦 + 𝑝 𝑥 𝑦 − 𝜇 𝑦2 (2) 

Prey population grows logistically. The parameter  𝜇   represents intra – specific competition coefficient of the 

predator population. The parameter  𝑝  in (1) represents capture efficiency coefficient while the same in (2) 

represents conversion efficiency coefficient. That is, both the capture and the conversion efficiency coefficients 
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are considered to be equal.The selection of equality simplifies analysis of the model but does not represent a real 

situation and thus has become a drawback of this model. 

2.2 The Modified Model 

Here, the model (1) – (2)is modified so as to overcome the stated drawbackand can be stated as  

𝑑𝑆 𝑑𝑇 = 𝛼1  𝑆  1 −  𝑆 𝐾1   − 𝛼2 𝑆 𝑅  (3) 

𝑑𝑅 𝑑𝑇 = 𝛽1  𝑅  1 −  𝑅 𝐾2   + 𝛼3 𝑆 𝑅 − 𝜇 𝑅2(4) 

The system of two equations (3) – (4) represent generalist predator prey model. Here (i)𝛼3 = 𝛿𝛼2  ,   0 < 𝛿 < 1  
(ii) 𝑆 𝑇 is the size of prey population with carrying capacity 𝐾1 (iii) 𝑅 𝑇 is the size of predator population with 

carrying capacity𝐾2 (iv)𝛼1is intrinsic growth rate of prey population, (v)𝛼2is the rate at which the predator and 

prey meet or capture efficiency coefficient (vi)𝛽1is intrinsic growth rate of predator population (vii)𝛼3is the rate 

at which the predator population growsor conversion efficiency coefficient (viii) 𝜇 is the intra specific 

competition rate among predator population itself and (ix) the quantities 𝛼1 , 𝛼2 , 𝛼3, 𝛽1 , 𝜇 are all represent 

positive parameters. 

It is assumed that the predator population had alternative choice for food. That is, the predator population does 

not depend on prey alone for food but has few alternative choices too available.Moreover, the conversion and 

capture efficiency coefficients  𝛼2 and   𝛼3 being dependent they are linearly proportional to each other.This 

consideration has made the present model moreimprovedthanthe already existing one. 

 

2.3 Scaling the system of equations of the modified model 

The main objective in scaling is to reduce the number of parameters and to make them unit less. Furthermore, it 

simplifies the model equations.For manipulating the technique of scaling, good knowledge and understanding of 

the mathematical equations that governs the system is a prerequisite. In the process of scaling we attempt to 

select intrinsic reference variables or scales so that each term in the dimensional equations transforms into the 

product of a constant dimensional factor and a dimensionless factor of unit of order of magnitude.  

Two time scales connecting with growth rates are introduced through  𝑇𝑆 =  1 𝛼1  and𝑇𝑅 =  1 𝛽1  .On the 

biological grounds, the growth time of prey   𝑇𝑆 is considered to runfaster in comparison with that of the 

predator  𝑇𝑅  and thus    𝑇𝑆 <  𝑇𝑅 . Furthermore, the transformation equations for time scale   𝑇 =  1 𝛼1   𝑡 and 

that for the population scales 𝑆 = 𝐾1  𝑥 , 𝑅 = 𝐾2  𝑦   areconsidered.Inserting these transformationsinto the model 

(3) – (4), we obtain the corresponding scaled equations as 

𝑑𝑥 𝑑𝑡 = 𝑥  1 − 𝑥 − 𝛼 𝑥 𝑦 ≡  𝐹1 𝑥, 𝑦   (5) 

𝑑𝑦 𝑑𝑡 = 𝛿 𝑦  1 − 𝑦 + 𝛽 𝑥 𝑦 −  𝜎 𝑦2  ≡  𝐹2 𝑥, 𝑦 (6) 

In the scaled model (5) – (6), the notations𝛼 =  𝛼2 𝛼1  𝐾2 , 𝛿 =  𝛽1 𝛼1  , 𝛽 =  𝛼3 𝛼1  𝐾1and  𝜎 = 𝜇 𝐾2 are all 

used for the purpose of representingdimensionless parameters. 

Theimposition of initial values at zerofor both the variables 𝑥 and  𝑦  i.e., 𝐹1 0,0 =  𝐹2 0,0 = 0 leads totwo 

interpretations: (i) The limiting and functional values of both the functions  𝐹1and  𝐹2 at origin are zero and 

hence they both are continues at origin (ii) Both the functions𝐹1  and   𝐹2   are continues in the positive 

quadrant  𝑅+
2 =   𝑥, 𝑦 : 𝑥 > 0, 𝑦 > 0 . 

A solution with non-negative initial value exists and is unique. Furthermore, it stays non-negative [9]. Now, 

boundedness of the solution is shown in what follows in the form of a theorem. 

2.4 Boundedness of solution of the modified model 

Theorem–1: All solutions  𝑥(𝑡), 𝑦(𝑡)  of the system of model equations (5) – (6) together with positive initial 

condition  𝑥0 , 𝑦0  are bounded within the regionA =   𝑥, 𝑦 : 0 ≤ 𝑥  𝑡 ≤ 1, 0 ≤ 𝑦  𝑡 ≤ 𝛽 + 1 . 
𝐏𝐫𝐨𝐨𝐟:Boundedness argument for 𝑥:from the first equation of the model (5) – (6), it is true that 𝑑𝑥 𝑑𝑡  ≤
  𝑥  1 − 𝑥 . Using partial fraction method, the equality solution of  𝑑𝑥 𝑑𝑡  ≤   𝑥  1 − 𝑥  is 𝑥 𝑡 =
  𝑥0  1 − 𝑥0    𝑒−𝑡 +  𝑥0  1 − 𝑥0      where 𝑥0 = 𝑥 0 > 0. 
Boundedness argument for 𝑦:from the second equation 𝑑𝑦 𝑑𝑡 = 𝛿 𝑦  1 − 𝑦 + 𝛽 𝑥 𝑦 −  𝜎 𝑦2of the model (5) – 

(6) it is true that 𝑑𝑦 𝑑𝑡  ≤   𝛿 𝑦  1 − 𝑦 + 𝛽 𝑥 𝑦 ≤   𝛿 𝑦  1 − 𝑦 + 𝛽  1 𝑦 = 𝛿 𝑦  1 − 𝑦 + 𝛽 𝑦. Using partial 

fraction method, the equality solution of 𝑑𝑦 𝑑𝑡  ≤   𝛿 𝑦  1 − 𝑦 + 𝛽 𝑦  has the form  

𝑦 𝑡 =   𝛽 + 1  𝑐𝑒−(𝛽+1)𝛿𝑡 + 1    where 𝑐  is integration constant. Hence, 𝑑𝑦 𝑑𝑡 ≤   𝛿 𝑦  1 − 𝑦 +  𝑥 𝑦 ⇒

𝑦 ≤ 1 + 𝛽 ∀𝑡 ≥ 0. 

 Therefore all solutions of the model system with positive initial value in 𝑅2
+  are bounded in the 

region   𝐴. 

 

2.5Qualitative analysis of the modified Model 
              In this section equilibrium point of co – existence for the model (5) – (6) is obtained. Also analyses of 

its stability and simulation studies are made. Upon equating the right hand sides of the model equations to zero, 

the co – existence equilibrium point of the system is obtained 

as 𝑥∗, 𝑦∗ =    𝛿 1 − 𝛼 + 𝜎  𝛿 + 𝛼𝛽 + 𝜎   ,   𝛽 + 𝛿  𝛿 + 𝛼𝛽 + 𝜎    . It can be pointed out here that 

this equilibrium point is valid if and only if  𝛼 <  1 +  𝜎 𝛿   . Additionally the three points  0, 0 ,
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 1, 0 and 0, 𝛿  𝛿 + 𝜎    are also axial equilibrium points of the model and they all are valid for all 

permissible parametric values. 

 

2.5.1 Local stability of the co – existence equilibrium point 

The local and asymptotic stability of co-existence equilibrium point can be studied by constructing 

Jacobian matrix 𝐽(𝑥, 𝑦)for the system and finding eigenvalues of that matrix at this equilibrium point.  

It is also appropriate here to recall that the co-existence equilibrium point is said to be stable if  𝑡𝑟(𝐽) is negative 

while 𝐷𝑒𝑡(𝐽)  is positive. Here, 𝑡𝑟(𝐽)  and 𝐷𝑒𝑡(𝐽) represent respectively trace and determinants of the matrix  𝐽. 
Further, an equilibrium point is said to be locally and asymptotically stable if the solution curves of the system 

those start near to this point essentially go towards this point for all forward times. 

The Jacobian matrix   𝐽  𝑥, 𝑦 for the system (5) – (6) takes the form 

𝐽 𝑥, 𝑦 =  
1 − 2𝑥 − 𝛼𝑦 −𝛼𝑥

𝛽𝑦 𝛿 − 2𝑦 𝛿 + 𝜎 + 𝛽𝑥
         (7) 

The second order square matrix (7), at co-existence equilibrium point 𝑥∗, 𝑦∗ , reduces to the form as 

𝐽 𝑥∗, 𝑦∗ =  
𝑎1 𝑎2

𝑎3 𝑎4
  

Here in the matrix   𝐽 𝑥∗, 𝑦∗  the four elements 𝑎1, 𝑎2 , 𝑎3and 𝑎4are notations and they are used to represent 

the following expressions: 

𝑎1 =   𝛼𝛿 −  𝜎 + 𝛿  [𝛿 + 𝛼𝛽 + 𝜎 ]  
𝑎2 = −𝛼  𝛿 1 − 𝛼 + 𝜎  𝛿 + 𝛼𝛽 + 𝜎    

𝑎3 = 𝛽  𝛽 + 𝛿  𝛿 + 𝛼𝛽 + 𝜎    
𝑎4 = 𝛿 +  𝛽 + 𝛿   𝛼𝛽  𝜎 + 𝛿 1 − 𝛼  2  −   2  𝛿 + 𝛼𝛽 + 𝜎    1 + 𝛽   

 

2.5.2 Conditions for Local stability of the co-existence equilibrium point  

It has already been stated that the local stability of the co-existence equilibrium point  𝑥∗, 𝑦∗  
requires two requirements. 

The first requirement is that the eigenvalues of the Jacobian matrix must be negative. That is𝑇𝑟 𝐽 = 𝑎1 + 𝑎4 is 

a negative quantity. This requirement results in forcing a condition on the model parameters as 

𝛿 + 𝛽 𝛼 𝛽 + 𝛿  𝜎 + 𝛿 1 − 𝛼  2  +   𝛼𝛿 − 3𝛿 − 3𝜎  𝛿 + 𝛼𝛽 + 𝜎   < 0 

The second requirement is that the determinant of the Jacobian matrix must be positive. That is  𝐷𝑒𝑡 𝐽 =
𝑎1𝑎4−𝑎2𝑎3is a positive quantity. This requirement results in forcing a condition on the model parameters: 

Both the expressions  2 + 𝛽 2 − 𝛼 𝛽 + 𝛿   − 𝛼𝛽 and 𝜎 + 𝛿 − 𝛼𝛿 are positive.                                                                                                                                                                                                        

Moreover, the other two equilibria 0, 0 and  1, 0 are unstable for all permissible values of the parameters 

involved. However, the fourth equilibrium point  0,  𝛿  𝛿 + 𝜎    is stable as long as the parameters satisfy the 

conditions   𝛿 < 𝜎  and    𝛼𝛽𝛿 >   𝛼 + 𝛿  𝜎 − 𝛿    but is unstable otherwise. 

 

2.5.3 Global stability of the co-existence equilibrium point 

The global stability of the co-existence equilibrium point  𝑥∗, 𝑦∗ of the model equations (5) – (6) is 

stated in the form of a theorem and proved as follows: 

Theorem–2If the co-existence equilibrium point  𝑥∗, 𝑦∗ is locally asymptotically stable in the positive 𝑥𝑦-

plane region then it will alsobe globally asymptotically stable in the same region. 

Proof: Consider that  𝑥, 𝑦 =  1 𝑥𝑦  be a Dulac‟s positive function in the positive quadrant. Also let us 

define two other functions as 1 𝑥, 𝑦 = 𝑥 1 − 𝑥 − 𝛼𝑥𝑦    and      2 𝑥, 𝑦 = 𝛿𝑦 1 − 𝑦 + 𝛽𝑥𝑦 −
𝜎𝑦2 .Then ∅ 𝑥, 𝑦 =  𝜕 𝜕𝑥    1 +  𝜕 𝜕𝑦    2 = −  𝛿 + 𝜎 𝑥   and hence it is a negative function of 

its arguments.Here,  ∅ 𝑥, 𝑦 does not change sign and is not identically zero in the positive quadrant of the 𝑥𝑦 

– plane. Thus, by Bendixson-Dulac criterion the interior equilibrium point is globally asymptotically stable and 

moreover the system has no limit cycle in this region. 
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Figure 1: Time series plot and phase diagram of the model (5) – (6) for the parametric values𝛼 = 0.5, 𝛽 = 0.7,

𝜎 = 0.9, 𝛿 = 0.2. 

 

The time series plot in Figure 1 illustrates that the population sizes of prey and predator converge to 

theirrespective equilibrium values 0.689 and 0.620. Further, the phase portrait of this system with different 

initial values indicates that the solution curves of the model system go towards the interior equilibrium 

point  0.689, 0.620 . Hence, it is evident pictorially that this interior equilibrium point is globally 

asymptotically stable. 

 

III. Persistence of the Model 
The system of model equations(5) – (6) is said to be persistence if all its variables too persist i.e., all populations 

in the system are eventually bounded away from zero [5, 8].As it is already described, the following hold true: 

(i) The initial value   𝑥 0 = 𝑥0 > 0  leads to   lim𝑡→∞ 𝑥 𝑡 = 1  
(ii) The initially value   𝑦 0 = 𝑦0 > 0  leads to lim𝑡→∞ 𝑦 𝑡 = 1 + 𝛽 > 0 

Therefore, both variables 𝑥 𝑡 and  𝑦 𝑡 of the model are bounded or persist and hence the system also persists. 

 

IV. Perturbation Analysis 
Having been scaled the model equations, their approximate solutions can be derived by systematically 

exploiting the sizes of dimensionless parameters. This procedure is well known as a perturbation theory. The 

two important methods those are very frequently used in solving the perturbed equations are (i) regular 

perturbation and (ii) singular perturbation methods. Singular perturbation method is used if the model exhibits 

different characters when the small parameter is set equal to zero as well as whenit is set different from zero [3]. 

However, in the present case regular perturbation method is applied because the small parameter 𝛿 

does not appear together with the highest derivative in the model equations. Also it is possible to consider that 
 1 𝛼1  ≪  1 𝛽1  and this relation reflects in the parameter 𝛿 to be a very small positive quantity. 

Thus, the system has approximate solution inthe form of Taylor like expansion in terms of the small 

parameter𝛿,i.e., 𝛿 ≪ 1; as, 

 𝑥 𝑡 = 𝑋0 𝑡 + 𝛿𝑋1 𝑡 + 𝛿2𝑋2 𝑡 + ⋯  
𝑦 𝑡 = 𝑌0 𝑡 + 𝛿𝑌1 𝑡 + 𝛿2𝑌2 𝑡 + ⋯ 

In the series expansion 𝑋0 𝑡  and 𝑌0 𝑡  are the leading order terms and the remainingterms 𝛿𝑋1 𝑡 ,
𝛿2𝑋2 𝑡 ,… , 𝑒𝑡𝑐.and 𝛿𝑌1 𝑡 , 𝛿2𝑌2 𝑡 ,… , 𝑒𝑡𝑐.are higher order correction terms those are small as expected. 

Similarly, for the inner perturbation expansion we obtain the leading order equations, as 

𝑑𝑋0 𝑑𝑡  =   𝑋0 1 − 𝑋0 − 𝛼𝑋0𝑌0    (8) 

𝑑𝑌0 𝑑𝑡  =   𝛽𝑋0𝑌0 −  𝜎 𝑌0
2 (9) 
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Theorem–3:All solutions  𝑋0 𝜏 , 𝑌0 𝜏   of the system of model equations (8) – (9) with positive initial 

condition  𝑎0 , 𝑏0  are bounded within the regionB =   𝑋0 𝜏 , 𝑌0 𝜏  : 0 ≤ 𝑋0 𝜏 ≤ 1, 0 ≤ 𝑌0 𝜏 ≤  𝛽 𝜎  . 
𝐏𝐫𝐨𝐨𝐟:As it is already stated above, a solution with non-negative initial value exists and is unique. Furthermore, 

it remains non-negative for all further times [9]. 

Now let us develop an appropriate argument for boundednessof    𝑋0 .From the first equation   𝑑𝑋0 𝑑𝑡  =
  𝑋0 1 − 𝑋0 − 𝛼𝑋0𝑌0  of the model (8) – (9), it holds true that𝑑𝑋0 𝑑𝑡  ≤   𝑋0 1 − 𝑋0 .However, usingthe 

method of partial fractions, the analytic solution of the perfect equation 𝑑𝑋0 𝑑𝑡 =   𝑋0 1 − 𝑋0  can be 

computed as 𝑋0 =   𝑎0  1 − 𝑎0    𝑒−𝑡 +  𝑎0  1 − 𝑎0      where 𝑎0 = 𝑋0 0 is a positive quantity. The 

expression for  𝑋0 gives that lim𝑡→∞ 𝑋0 = 1 and hence the variable is bounded. 

Just similar to the above, here let us develop an appropriate argument for boundedness of   𝑌0. From the second 

equation 𝑑𝑌0 𝑑𝑡  =   𝛽𝑋0𝑌0 −  𝜎 𝑌0
2   of the model (8) – (9) it holds true that   𝑑𝑌0 𝑑𝑡  ≤   𝛽𝑋0𝑌0 −  𝜎 𝑌0

2 ≤
 𝛽𝑌0 −  𝜎 𝑌0

2, since upper bound of the variable  𝑋0is 1.Using the method of partial fractions, the solution for the 

perfect equation 𝑑𝑌0 𝑑𝑡 =  𝛽𝑌0 −  𝜎 𝑌0
2 can be obtained as 𝑌0 𝑡 =   𝛽  𝜎 + 𝐾𝑒−𝛽𝑡     where 𝐾  is integral 

constant. The expression for  𝑌0 gives that lim𝑡→∞ 𝑌0 =  𝛽 𝜎   and hence the variable is bounded. 

Having shown that both the variables   𝑋0  and  𝑌0 are bounded above with the respective boundaries  1  and 

  𝛽 𝜎  it can be concluded that all solutions of the model equations with any positive initial values selected 

from𝑅2
+ are bounded in the region   𝐵. 

 

4.1 Qualitative analysis  

It appears that it may notbe possible or at least quite difficult to obtain an analytic solutions for both the 

variables𝑋0and 𝑌0. But, it is possible to solve for them numerically. Hence, the numerical solutions will be 

considered as an alternative to the correspondinganalytical ones. 

The leading order equation has two axial equilibrium points 𝐸0 0, 0  and 𝐸1 1, 0 and one co-existence 

equilibrium point   𝐸2 𝑋0
∗,𝑌0

∗ where 𝑋0
∗ =  𝜎  𝜎 + 𝛼𝛽   and𝑌0

∗ =  𝛽  𝜎 + 𝛼𝛽   . All the three equilibrium 

points are physically valid and meaningful for all the permissible parametric values. The linearization technique 

gives us the Jacobian matrix   𝐽 𝑋0
∗,𝑌0

∗ as 

𝐽 𝑋0
∗,𝑌0

∗ =  
1 − 2𝑋0

∗ − 𝛼𝑌0
∗ −𝛼𝑋0

∗

𝛽𝑌0
∗ 𝛽𝑋0

∗ − 2𝜎𝑌0
∗  

4.2 Local stability of the equilibrium points 

Here it can be shown that (i) both the equilibrium points 𝐸0 0, 0  and𝐸1 1, 0  are unstable nodes but (ii) the 

co-existence equilibrium point 𝐸2 𝑥
∗, 𝑦∗ is stable provided that the inequality conditions on the parameters 

  0 <  𝜎  𝛼  <  𝛽 < 1  are satisfied. 

The Jacobian matrix  𝐽 𝑋0
∗,𝑌0

∗ evaluated at the equilibrium point𝐸0 0, 0  takes the form as 

𝐽 0, 0 =  
1 0
0 0

  

The eigenvalues of this matrix 𝐽  0, 0 can found to be𝜆1 = 1  and  𝜆2 = 0; which indicate a degenerate case. 

Also since the eigenvalues of 𝐽 0, 0  is equal to one and is a positive value, i.e.,   𝑇𝑟𝐽  0, 0 = 1 > 0 the 

trivial equilibrium point 𝐸0 0, 0 is an unstable saddle node. 

The Jacobian matrix  𝐽  𝑋0
∗,𝑌0

∗ evaluated at the equilibrium point 𝐸1 1, 0  takes the form as 

𝐽  1, 0 =  
−1 −𝛼
0 𝛽

  

The eigenvalues of this matrix  𝐽  1, 0 are found to be𝜆1 = −1  and𝜆2 = 𝛽; which are real but opposite in 

sign. Therefore, the axial equilibrium point 𝐸1 1, 0 is unstable. 

The Jacobian matrix  𝐽  𝑋0
∗,𝑌0

∗ evaluated at the equilibrium point 𝐸2 𝑥
∗, 𝑦∗  takes the form as 

𝐽 𝑋0
∗, 𝑌0

∗ =  
𝑎 𝑏
𝑐 𝑑

  

Here,notations for the matrix elements are used as follows: 

𝑎 = 1 − 2 𝜎  𝜎 + 𝛼𝛽   − 𝛼 𝛽  𝜎 + 𝛼𝛽    
 𝑏 = −𝛼 𝛽  𝜎 + 𝛼𝛽    

𝑐 = 𝛽  𝛽  𝜎 + 𝛼𝛽    
𝑑 =  𝛽  𝜎  𝜎 + 𝛼𝛽   − 2𝜎 𝛽  𝜎 + 𝛼𝛽    

In order that the co-existence equilibrium point 𝐸2 𝑥
∗, 𝑦∗ is stable, the two requirements those are to be 

satisfied are: Trace of the matrix   𝐽 𝑋0
∗, 𝑌0

∗ is negative while its determinant is positive. The former 

requirement 𝑇𝑟 𝐽 = 𝑎 + 𝑑 < 0  leads to the condition 0 < 𝛽 < 1 while the latter  𝐷𝑒𝑡 𝐽 = 𝑎𝑑 − 𝑏𝑐 > 0 leads 

to    𝛼 >  𝜎 𝛽  2. Thus, both stability conditionsimply that the model parameters satisfy the relations as  0 <

 𝜎  𝛼  <  𝛽 < 1. 

Theorem–4 If the co-existence equilibrium point  𝑋0
∗, 𝑌0

∗ of the model equations (8) – (9) is locally 

asymptotically stable in the positive𝑋0𝑌0 −plane region then it is also globally asymptotically stable in the same 

region. 
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Proof: Let  𝐹 𝑋0, 𝑌0 =  1 𝑋0𝑌0  > 0be a Dulac‟s function in the positive quadrant. Also define two other 

functions as    𝐹1 𝑋0, 𝑌0 = 𝑋0 1 − 𝑋0 − 𝛼𝑋0𝑌0 and   𝐹2 𝑋0 , 𝑌0 = 𝛽𝑋0𝑌0 − 𝜎 𝑌0
2 . Then, the function 

𝜓  𝑋0, 𝑌0 defined to be equal to  𝜕 𝜕𝑋0   𝐹 𝐹1 +  𝜕 𝜕𝑌0   𝐹 𝐹2 is simplified to have an expression 
 − 1 𝑌0  −  𝜎 𝑋0   and is a negative quantity. Equivalently it can be expressed as     𝜓  𝑋0, 𝑌0 =
 𝜕 𝜕𝑋0   𝐹 𝐹1 +  𝜕 𝜕𝑌0   𝐹 𝐹2 =  − 1 𝑌0  −  𝜎 𝑋0   < 0. However, it can be observed that the function 

𝜓  𝑋0, 𝑌0 does not change sign and is not identically zero in the positive quadrant of the 𝑋0𝑌0 – plane. Thus, 

according to Bendixson-Dulac criterion this interior equilibrium point  𝑋0
∗, 𝑌0

∗ is globally asymptotically 

stable and the system has no limit cycle in that region. 

 
Figure 2: Numerical solution of leading order equation with 𝛼 = 0.5,𝛽 = 0.7,𝜎 = 0.9. 

 

 The time series plot of the system (8) – (9) given in figure 2 illustrates that the population sizes 

converge to their finite equilibrium values. The predator population size is greater than the prey population size 

which is normally expected. The Phase portrait of the system corresponding to different initial values indicates 

that the solution curves of the leading order equation converge towards the interior equilibrium 

point 0.721, 0.561 . This observation supports that the interior equilibrium point is globally asymptotically 

stable. 

 

V. Modeling with the inclusion of Harvesting 
A further harvesting variable  𝐸   where  0 < 𝐸 < 𝐸𝑚𝑎𝑥 is introduced in to the model which is called a fishing 

effort or Fishing mortality. If𝐸𝑚𝑎𝑥 ≥ 1  then the stock would be driven to extinction [7]. Here, harvesting of 

either prey or the predator are considered and analyzed the effects.  

 

5.1   Modeling with the inclusion of Prey Harvesting 

Consider that the prey is Tilapia fish with population size  𝑆  while the predator is Whale Fish with the 

size 𝑅.  Both the populations are further assumed to grow following logistic function in the similar way as it is 

described in the model equations (3)
_ 

(4). A further variable  𝐸  is introduced into the prey equation which is 

called fishing effort[4]. Assume that the catch of fish per unit effort is proportional to the availably amount of 

fish  𝑆. Thus, a generalist species predator prey model with prey harvesting and intra – specific competition 

among predators has of the form 

 𝑑𝑆 𝑑𝑇  = 𝛼1 𝑆  1 −  𝑆 𝐾1   − 𝛼2𝑆𝑅 − 𝑞𝐸𝑆                     (10) 

 𝑑𝑅 𝑑𝑇  = 𝛽1  𝑅  1 −  𝑅 𝐾2   + 𝛼3𝑆𝑅 − 𝜇 𝑅2                    (11) 

Here, 𝑞 is the proportionality constant known as „catch ability‟ coefficient and it describes how easily the fish 

can be harvested. Then, the term  𝑞𝐸 corresponds to the mortality or reduction of prey population caused due to 

harvesting and has the same dimension as 𝛼1. 
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The scaled versions of the equations (10) – (11) using the new scaled parameters  𝑇 =  1 𝛼1  𝑡, 𝑆 = 𝐾1  𝑥, 𝑅 =
𝐾2  𝑦 take the form as  

 𝑑𝑥 𝑑𝑡  = 𝑥 1 − 𝑥 − ∅1𝑥𝑦 − 𝑒1  𝑥                 (12) 

 𝑑𝑦 𝑑𝑡  = ∅2  𝑦 1 − 𝑦 − ∅3𝑥𝑦 − ∅4𝑦
2        (13) 

It may be observe that the dimensionless parameters are represented by the notations  ∅1 =  𝛼2 𝛼1  𝐾2 ,   ∅2 =
 𝛽1 𝛼1  ,   ∅3 =  𝛼3 𝛼1  𝐾1 ,  ∅4 =  𝜇 𝛼1  𝐾2and𝑒1 =  𝑞 𝛼1  𝐸. The boundedness of solution of this system is 

stated in the form of a theorem and proved as follows: 

Theorem – 5:  All solutions  𝑥, 𝑦  of the model equations (12) – (13) together with a positive initial condition 

 𝑥0, 𝑦0  are bounded within the regionC =   𝑥, 𝑦 : 0 ≤ 𝑥  𝑡 ≤ 1,    0 ≤ 𝑦  𝑡 ≤ 𝜙3 + 1 . 
𝐏𝐫𝐨𝐨𝐟:As it is already sated that a solution with non-negative initial values exists and is unique. Furthermore, 

the solution remains non-negative during entire evolution of time [9]. 

Now let us develop an appropriate boundedness argument for 𝑥:from the first equation  𝑑𝑥 𝑑𝑡  = 𝑥 1 − 𝑥 −
∅1𝑥𝑦 − 𝑒1𝑥  of the model (12) – (13), it holds true that   𝑑𝑥 𝑑𝑡  ≤   𝑥  1 − 𝑥 . On applying the method of 

partial fractions, the analytical solution for the perfect equation 𝑑𝑥 𝑑𝑡  ≤   𝑥  1 − 𝑥  can be obtained as   

𝑥 𝑡 =   𝑐0  1 − 𝑐0    𝑒−𝑡 +  𝑐0  1 − 𝑐0       where 𝑐0 = 𝑥 0 > 0  is the integral constant. The foregoing 

expression gives that lim𝑡→∞ 𝑥 𝑡 = 1 and hence the variable 𝑥 𝑡  is bounded. 

Similarly, let us also develop an appropriate argument for boundedness of the variable 𝑦: from the second 

equation  𝑑𝑦 𝑑𝑡  = ∅2  𝑦 1 − 𝑦 − ∅3𝑥𝑦 − ∅4𝑦
2  of the model (12) – (13) it holds true without loss of 

generality that  𝑑𝑦 𝑑𝑡  ≤  ∅2 𝑦 1 − 𝑦 − ∅3𝑦 : Here we have discarded the last term and substituted the value 

 𝑥 = 1 as it is the upper bound of the variable. Using the method of partial fractions the solution of the perfect 

equation can be obtained as  𝑦 𝑡 =   ∅3 + 1  𝑐1𝑒
−(∅3+1)∅2𝑡 + 1    where  𝑐1  is an integral constant. The 

foregoing expression gives that lim𝑡→∞ 𝑦 𝑡 ≤ 1 + ∅3 for all  𝑡 ≥ 0   and hence the variable 𝑦 𝑡  is bounded. 

Therefore, it can be concluded that all solutions  𝑥, 𝑦  of the model equations together with any positive initial 

value selected from  𝑅2
+ are bounded in the region C. 

 

5.2   Co-existence equilibrium point 

Let the co-existence equilibrium point for the model (12) – (13) be represented by 𝑎∗, 𝑏∗ . Here the notations 

used in the coordinates stand for the following expressions: 

  𝑎∗ =  ∅2 1 − ∅1 − 𝑒1 + ∅4 1 − 𝑒1   ∅2 + ∅1∅3 + ∅4   

𝑏∗ =  ∅2 + ∅3 1 − 𝑒1   ∅2 + ∅1∅3 + ∅4   

The co-existence point exists only when the inequality conditions on the parameters (i)∅2 + ∅4 > ∅1∅2 +
𝑒1∅2 + 𝑒1∅4and (ii)∅2 + ∅3 > 𝑒1∅3 hold true. 

 

5.3 Maximum sustainable yield 

The sustainable yield during the equilibrium state is denoted by  𝑦 𝑒1 andit can beexpressed following the 

procedure given in[1] as 𝑦 𝑒1 = 𝑒1𝑎
∗ = 𝑒1  ∅2 1 − ∅1 − 𝑒1 + ∅4 1 − 𝑒1   ∅2 + ∅1∅3 + ∅4  . Here 

 𝑎∗, 𝑏∗  denotes locally and asymptotically stable interior equilibrium point. 

The maximum sustainable yield of the population is achieved at𝑒1𝑚𝑠𝑦 =  1 2    ∅2 + ∅4 − ∅1∅2  ∅4 + ∅2    

and it is resulted fromsolving 𝑑𝑦 𝑑𝑒1  = 0.It is also important to note the limits as 0 < 𝑒1𝑚𝑠𝑦 <  𝑞 𝛼1  . The 

maximum sustainable yield  𝑚𝑠𝑦 is defined as 

𝑚𝑠𝑦 = −𝐴1 𝑒1𝑚𝑠𝑦  
2

+ 𝐴2𝑒1𝑚𝑠𝑦  ≡ 𝑓 𝑒1𝑚𝑠𝑦   

Here the notations stand for  𝐴1 = ∅2 + ∅4 and𝐴2 = ∅2 1 − ∅1 + ∅4. The function𝑓 is an arbitrary function of 

its argument.It is possible to rewrite to the form 

𝑓 𝑒1𝑚𝑠𝑦  =  
0 , 𝑓𝑜𝑟   𝑒1𝑚𝑠𝑦 = 0  𝑜𝑟   𝐴2 𝐴1  

2𝐴2
2 𝐴1 , 𝑓𝑜𝑟  𝑒1𝑚𝑠𝑦 =  𝐴2 2𝐴1  

  

It is straight forward to notice that the maximum sustainable yield is 4𝐴2 𝑒1𝑚𝑠𝑦 . 

Theorem – 6: If the co-existence equilibrium point  𝑎∗, 𝑏∗ of (12) – (13) is locally asymptotically stable in 

the positive 𝑥𝑦 – plane region, then it is also globally asymptotically stable in the sameregion. 

Proof: Consider Dulac‟s function in the positive quadrant as   𝐺 𝑥, 𝑦 =  1 𝑥𝑦  > 0  and also two other 

functions defined as   𝐺1 𝑥, 𝑦 = 𝑥 1 − 𝑥 − 𝜙1𝑥𝑦 − 𝑒1𝑥  and 𝐺2 𝑥, 𝑦 = 𝜙2𝑦 1 − 𝑦 − 𝜙3𝑥𝑦 − 𝜙4𝑦
2 . 

Then, the function   Ω 𝑥, 𝑦 defined by =  𝜕 𝜕𝑥   𝐺𝐺1 +  𝜕 𝜕𝑦   𝐺𝐺2  takes a negative expression 

as − 1 𝑦  −  ∅2 𝑥  −  ∅4 𝑥   < 0. Hence, Ω 𝑥, 𝑦  does not change its negative sign and is not identically 

zero in the positive quadrant of  𝑥𝑦 – plane. Thus, by Bendixson 
_ 
Dulac criterion the interior equilibrium point 

is globally asymptotically stable and the system has no limit cycle in that region. 

Figure 3 illustrates that the population sizes converges to finite equilibrium values. The maximum yield is 

0.157at𝑒1 = 0.455  and the sameis zero at𝑒1 = 0.909 when the values are adjusted to three significant digits. 
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Figure 3: Populations and the yield as a function of effort𝑒1for 𝜙1 = 0.5, 𝜙2 = 0.2,   𝜙3 = 0.7, 𝜙4 = 0.9 

 

 
Figure 4: Time series plot and phase diagram of population biomass when the target population is prey for the 

parametric values   𝜙1 = 0.5, 𝜙2 = 0.2,   𝜙3 = 0.7, 𝜙4 = 0.9 , 𝑒1 = 0.45. 
 

The time series plot of the system (12) – (13) in Figure 4 indicates that population size converges to finite 

equilibrium value. The phase portrait of this system in this figure corresponding to different initial values 

indicates that the interior equilibrium point (0.348, 0.389) is globally asymptotically stable. 

 

5.4 Modeling with the inclusion of  predator harvesting 

We also consider that the predator or Whale fish population grows naturally according to logistic function and 

we also include harvesting term. A further variable  𝐸  is introduced and is called fishing effort. We assume that 

the catch of fish per unit effort is proportional to the available amount of Whale fish  𝑅. Thus, a generalist 

predator prey model together with intra specific competition and predator harvesting is 

 

 𝑑𝑆 𝑑𝑇  = 𝛼1 𝑆  1 −  𝑆 𝐾1   − 𝛼2𝑆𝑅 (14) 
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 𝑑𝑅 𝑑𝑇  = 𝛽1  𝑅  1 −  𝑅 𝐾2   + 𝛼3𝑆𝑅 − 𝜇 𝑅2 − 𝜂 𝐸 𝑅       (15) 

Here  𝜂 the proportionality constant known as catch ability coefficient that describes how easily the fish can be 

harvested. Then, the factor 𝜂 𝐸 corresponds to the fishing mortality or exclusion caused due to harvesting and 

the factor has the same dimension as 𝛽1 . The scaled form of the equations (14) – (15) using the 

transformations  𝑇 =  1 𝛼1   𝑡, 𝑆 = 𝐾1  𝑥 and  𝑅 = 𝐾2  𝑦   reduces to 
 𝑑𝑥 𝑑𝑡  = 𝑥 1 − 𝑥 − 𝜑1𝑥𝑦                    (16) 

 𝑑𝑦 𝑑𝑡  = 𝜑2  𝑦 1 − 𝑦 + 𝜑3𝑥𝑦 − 𝜑4𝑦
2 − 𝑒2 𝑦.      (17) 

Here the notations used, to represent parametric expressions, are  𝜑1 =  𝛼2 𝛼1  𝐾2 , 𝜑2 =  𝛽1 𝛼1  , 𝜑3 =
 𝛼3 𝛼1  𝐾1 , 𝜑4 =  𝜇 𝛼1  𝐾2and𝑒2 =  𝜂 𝛼1  𝐸 . 
Theorem–7:All solutions  𝑥, 𝑦  of the model equations (16) – (17) together with any positive initial condition 
 𝑥0, 𝑦0  are bounded with in a regionD =   𝑥, 𝑦 : 0 ≤ 𝑥  𝑡 ≤ 1, 0 ≤ 𝑦  𝑡 ≤ 𝜑3 + 1 . 
𝐏𝐫𝐨𝐨𝐟: As it is already described, a solution with non-negative initial value exists and is unique. Furthermore, 

the solution remains non-negative [9]. 

Boundedness argument for 𝑥:from the first equation(16) of the model it holds true that 𝑑𝑥 𝑑𝑡  ≤   𝑥  1 − 𝑥 . 
Using partial fraction method, the equality solution can be obtained as 

  𝑥 𝑡 =   𝑥0  1 − 𝑥0    𝑒−𝑡 +  𝑥0  1 − 𝑥0      where 𝑥0 = 𝑥 0 > 0.  Also, lim𝑥⇢∞ 𝑥 𝑡 = 1 . Hence, 

𝑑𝑥 𝑑𝑡  ≤   𝑥  1 − 𝑥  implies that  𝑥 𝑡 ≤ 1,   ∀𝑡 ≥ 0. Hence  𝑥 is bounded. 

Boundedness argument for 𝑦: from the second equation (17) of the model it holds true that 𝑑𝑦 𝑑𝑡  ≤
  𝜑2 𝑦 1 − 𝑦 + 𝜑3𝑦, where we have set  𝑥 𝑡 = 1.Using themethod of partial fractions, the analytical solution 

of the perfect equation has been found to be of the form  𝑦 𝑡 =   𝜑3 + 1  𝑐𝑒−(𝜑3+1)𝜑2𝑡 + 1   , where 𝑐 is any 

integral constant. Also, lim𝑡⇢∞ 𝑦 𝑡 = 1 + 𝜑3 . Hence, 𝑑𝑦 𝑑𝑡 ≤   𝜑2 𝑦 1 − 𝑦 + 𝜑3𝑦 implies that 𝑦 ≤ 1 +
𝜑3 ∀𝑡 ≥ 0. Hence  𝑦  is bounded. 

Therefore it can be concluded that all solutions of the model equations with any positive initial value taken 

from𝑅2
+ are bounded in the region  𝐷. 

The co-existence equilibrium point of (16) – (17) is denoted by 𝑐∗, 𝑑∗  where the coordinates represent the 

expressions    𝑐∗ = 1 − 𝜑1  𝜑2 + 𝜑3 − 𝑒2  𝜑2 + 𝜑1𝜑3 + 𝜑4   and    𝑑∗ =
 𝜑2 + 𝜑3 − 𝑒2  𝜑2 + 𝜑1𝜑3 + 𝜑4  .This equilibrium point exists if the two inequality conditions on the 

parameters (i)𝜑2 + 𝜑1𝑒2 + 𝜑4 > 𝜑1𝜑2  and (ii)𝜑2 + 𝜑3 > 𝑒2 hold good. 

Maximum sustainable yield 

The Maximum sustainable yield or msy in the equilibrium situation is denoted by  𝑦 𝑒2 and is defined as 

  𝑦 𝑒2 = 𝑒2𝑑
∗ = 𝑒2  𝜑2 + 𝜑3 − 𝑒2  𝜑2 + 𝜑1𝜑3 + 𝜑4   where  𝑐∗, 𝑑∗   is locally asymptotically stable 

interior equilibrium point of the model equations(16) – (17). The Maximum sustainable yield ormsyis achieved 

at 𝑒2 =   𝜑2 + 𝜑3 2  and this result follows from    𝑑𝑦 𝑑𝑒2 = 0.Hence, the maximum sustainable yield is 

given by 

𝑚𝑠𝑦 = 𝑒2𝑚𝑠𝑦  𝜑2 + 𝜑3 − 𝑒2𝑚𝑠𝑦   𝜑2 + 𝜑1𝜑3 + 𝜑4  = 𝐵1𝑒2𝑚𝑠𝑦 − 𝐵2 𝑒2𝑚𝑠𝑦  
2
≡ 𝑔(𝑒2𝑚𝑠𝑦 . Here   𝐵1 =

  𝜑2  +  𝜑3  𝜑2 + 𝜑3𝜑1 + 𝜑4 
−1 , 𝐵2 =  𝜑2 + 𝜑3𝜑1 + 𝜑4 

−1 and 𝑔 is an arbitrary function of its 

argument.Possibly the function𝑔 can be expressed in the form as 

𝑔 𝑒2𝑚𝑠𝑦  =  
0 , 𝑓𝑜𝑟  𝑒2𝑚𝑠𝑦 = 0  𝑜𝑟  𝐵1 𝐵2 

𝐵1
2(2 − 𝐵2) 4𝐵2 , 𝑓𝑜𝑟   𝑒2𝑚𝑠𝑦 = 𝐵1 2𝐵2 

  

It is also observed that the maximum sustainable yield occurs when 𝐵1 2   2 − 𝐵2 𝑒2𝑚𝑠𝑦 and   0 < 𝐵2 < 2. 

Theorem–8If the co-existence equilibrium pint  𝑐∗, 𝑑∗ of (16) –(17) is locally asymptotically stable in any 

region of the positive quadrant then it is also globally asymptotically stable in the same region. 

Proof: Consider Dulac‟s function in the positive quadrant as  𝐻 𝑥, 𝑦 =  1 𝑥𝑦  > 0and also two other 

functions as  𝐻1 𝑥, 𝑦 = 𝑥 1 − 𝑥 − 𝜑1𝑥𝑦    and 𝐻2 𝑥, 𝑦 = 𝜑2𝑦 1 − 𝑦 − 𝜑3𝑥𝑦 − 𝜑4𝑦
2 − 𝑒2𝑦 .Then, the 

function Χ 𝑥, 𝑦  defined by   𝜕 𝜕𝑥   𝐻𝐻1 +  𝜕 𝜕𝑦   𝐻𝐻2    takes a negative value as  − 1 𝑦  −  𝜑2 𝑥  −
𝜑4𝑥<0. That is, it always holds thatΧ𝑥,𝑦<0.Thus, by Bendixson–Dulac criterion the interior equilibrium point 

is globally asymptotically stable and the system has no limit cycle in this region. 
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Figure 5 indicates that population converges to finite equilibrium values. The maximum yield is 0.139  at𝑒2 =
0.450   and it is zero at  𝑒2 = 0.909 in 3significant digits. It has negative impact on the growth of the predator 

population while positive impact on the source prey 

 

Figure 5: Equilibrium values of populations and the yield as a function of effort 𝑒2for the parametric 

values𝜙1 = 0.5, 𝜙2 = 0.2,   𝜙3 = 0.7, 𝜙4 = 0.9 . 
 

 
Figure 6: Time series plot and phase diagram of population biomass when the target population is prey where 

𝜑1 = 9.5, 𝜑3 = 6.5,   𝜑4 = 32, 𝜑2 = 0.2, 𝑒2 = 0.5 
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The time series plot of the system (14) – (15) in figure 6 indicates that population converges to finite 

equilibrium values. The phase portrait of this system in Figure 6 corresponding to different initial values 

indicates that the solution curves of the system go towards the interior equilibrium point (0.3862, 0.276).  More 

over this equilibrium point is globally asymptotically stable.  

 

VI. Lyapunov function and stability of interior equilibrium points 
It is well known that the use of Lyapunov function is a powerful tool for determining global stability of 

an equilibrium point. The Lyapunov theory is used to draw conclusions about the nature of trajectories of a 

system of differential equations, especially non-linear, without finding the actual trajectories or solving the 

differential equations.  

A system is said to be globally asymptotically stable if for every trajectory𝜒′ 𝑡 = 𝐹 𝜒 , we have 𝜒(𝑡) → 𝜒𝑒  as 

𝑡 → ∞ where 𝜒𝑒 is an equilibrium point of the system. 

Theorem–9:Consider a positive definite function 𝑊 𝑥, 𝑦 =  𝑥 − 𝑥∗ − 𝑥∗ ln 𝑥 𝑥∗   + 𝑀 𝑦 − 𝑦∗ −
𝑦∗ln𝑦𝑦∗ about the interior equilibrium point 𝑥∗,𝑦∗ of the system (5) – (6) where 𝑀 is some constant. The 

interior equilibrium point  𝑥∗, 𝑦∗  is globally asymptotically stable. 

Proof:It can beshown that 𝑑𝑊 𝑑𝑡   is a negative definite function.Using the chain rule of total differentiation, 

the differential term  𝑑𝑊 𝑑𝑡  can be expressed in terms of partial derivatives as   𝜕𝑊 𝜕𝑥   𝑑𝑥 𝑑𝑡  +
𝑀𝜕𝑊𝜕𝑦𝑑𝑦𝑑𝑡 and reduces to the form 1−𝑥∗𝑥𝑑𝑥𝑑𝑡+𝑀1−𝑦∗𝑦𝑑𝑦𝑑𝑡 after replacing the partial differential 

coefficients of   𝑊 with the respective expressions. 

Further, on using (5) – (6) it can be obtained that  𝑑𝑊 𝑑𝑡 = − 𝑥 − 𝑥∗ 2 − 𝛼 𝑥 − 𝑥∗  𝑦 − 𝑦∗ − 𝑀𝛿 𝑦 −
𝑦∗2+𝑀𝛽𝑥−𝑥∗𝑦−𝑦∗−𝑀𝜎𝑦−𝑦∗2. Up on setting the arbitrary constant as  𝑀=𝛼𝛽, the foregoing expression 

issimplified to the form as 𝑑𝑊 𝑑𝑡 = − 𝑥 − 𝑥∗ 2 −   𝛼𝛿 𝛽  +  𝛼𝜎 𝛽    𝑦 − 𝑦∗ 2   and is a negative 

expression. As𝑑𝑊 𝑑𝑡  is a negative definite function and thus it is a Lyapunov function. Therefore the co-

existence equilibrium point   𝑥∗, 𝑦∗ is globally asymptotically stable. 

Theorem – 10:Consider a positive definite function   𝑈 𝑋0 , 𝑌0   =  𝑋0 − 𝑎∗ − 𝑎∗ ln 𝑋0 𝑎∗   + 𝑁 𝑌0 − 𝑏∗ −
𝑏∗ln𝑌0𝑏∗ about the interior equilibrium point 𝑎∗,𝑏∗ of the system of equations(8) – (9) where 𝑁 is some 

constant. The interior equilibrium point  𝑎∗, 𝑏∗  is globally asymptotically stable.  

Theorem – 11:Consider a positive definite function   𝑉 𝑥, 𝑦   =  𝑥 − 𝑐∗ − 𝑐∗ ln 𝑥 𝑐∗   + 𝑄 𝑦 − 𝑑∗ −
𝑑∗ln𝑦𝑑∗ about the interior equilibrium point 𝑐∗,𝑑∗ of the system of equations(12) – (13) where 𝑄 is some 

constant. The interior equilibrium point  𝑐∗, 𝑑∗  is globally asymptotically stable.  

Theorem – 12:Consider a positive definite function 𝐻 𝑥, 𝑦   =  𝑥 − 𝑚∗ −𝑚∗ ln 𝑥 𝑚∗   + 𝑌 𝑦 − 𝑛∗ −
𝑛∗ln𝑦𝑛∗about the interior equilibrium point 𝑚∗,𝑛∗ of the system (16) – (17) where 𝑌 is some constant. The 

interior equilibrium point  𝑚∗, 𝑛∗  is globally asymptotically stable. 

The Theorems 10, 11 and 12 also can be proved applying the same technique that has been followed in proving 

Theorem 9. 

 

VII. Result and Discussion 
It has been shown that, the locally asymptotically stable interior equilibrium points of the four models 

(5) – (6), (8) – (9), (12) – (13) and (16) – (17) are also globally asymptotically stable. This result is verified 

using both Bendixson – Dulac criterion and the Lyapunov function theory. The four positive definite functions 

constructed about interior equilibrium point of each system are all shown to be negative definite functions and 

hence they are Lyapunov functions. 

Furthermore, no limit cycle is formed in the positive quadrant for any of the four models. 

In the predator harvesting, the point at which maximum sustainable yield attain depends on the parameter 𝜑2 

and 𝜑3  i.e. on the carrying capacity of the prey population and its intrinsic growth rate considering other 

parameters constant. Furthermore, the yield attains a maximum value when𝑒2𝑚𝑠𝑦 =   𝜑2 + 𝜑3 2  < 𝜂 𝛼1 .The 

maximum sustainable yield of predator harvesting is computed to be 𝐵1 2   2 − 𝐵2 𝑒2𝑚𝑠𝑦  andis valid for 

0 <   𝐵1 < 2. On the other hand, the yield of prey harvesting attains maximum 

when   𝑒1𝑚𝑠𝑦 =  1 2    ∅2 + ∅4 − ∅1∅2  ∅2 + ∅4   < 𝑞 𝛼1 . The maximum sustainable yield of prey 

harvesting is 4 ∅2 1 − ∅1 + ∅4  𝑒1𝑚𝑠𝑦  and it is independent of the carrying capacity 𝐾1of the prey population. 

In this study it is verified that Tilapia fish and Whale fishcan be harvested independently. In each case the 

population value converges to a finite positive value.  

All simulations of the models show reasonable results relating to (i) global stability of the interior equilibrium 

points,(ii) The yield per unit effort of populationbiomass (iii) the impact of prey harvesting on the source prey 

and its predator, and also (iv) the impact of predator harvesting on the predator and its source. 
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