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Abstract: In this paper, we have considered the unsteady MHD free convection flow of an incompressible 

electrically conducting second grade fluid through porous medium bounded by an infinite vertical porous 

surface in the presence of heat source and chemical reaction in a rotating system taking hall current into 

account. The momentum equation for the fluid flow through porous medium is governed by Brinkman’s model. 

In the undisturbed state, both the plate and fluid are in solid body rotation with the same angular velocity about 

normal to the infinite vertical plane surface. The vertical surface is subjected to the uniform constant suction 

perpendicular to it and the temperature on the surface varies with time about a non-zero constant mean while 

the temperature of free stream is taken to be constant. The exact solutions for the velocity, temperature and 

concentration are obtained analytically making use of perturbation technique. The velocity expression consists 

steady state and oscillatory state. It reveals that, the steady part of the velocity field has three layer characters 

while the oscillatory part of the fluid field exhibits a multi layer character. The influence of various governing 

flow parameters on the velocity, temperature and concentration is analysed graphically. We also discussed 

computational results for the skin friction, Nusselt number and Sherwood number in the tabular forms. 

Keywords: Convection flows, Hall effects, heat and mass transfer, MHD flows, infinite vertical plates, porous 

medium, rotating channels, second grade fluids. 

 

I.  INTRODUCTION  
 Generally fluid solid mixtures are considered to behave like non-Newtonian fluids. This type of fluids 

occurs in pneumatic and hydraulic transport of solids and thus has many industrial applications. A specific 

research area in this direction is the use of coal based slurries which requires the analysis of various transport 

processes in non-Newtonian fluids. In the study of non-Newtonian fluids, it has been mainly motivated to their 

importance in the problems from applications of engineering and chemical industry. The partial differential 

equations usually appear in many areas of the natural and physical sciences. They describe different physical 

systems, ranging from gravitational to fluid dynamics and have been used to solve problems in the chemistry, 

mathematical biology, solid state physics etc. Due to complexity of non-Newtonian fluids, there is no one model 

which describes all of their properties. Most of the models for such type of fluids have been proposed. In those 

of the models, there is a second grade fluid model which is the most popular. This is particularly so due to the 

fact that one can reasonably hope to obtained the analytic solution of the mathematical model. We also 

mentioned for the most interesting studies of second grade fluids [2, 6, 11, 12, 15, 24 and 25]. Some of these 

methods include the tanh method [36], the quotient trigonometric function expansion method [21], F-expansion 

method [8] and so on. The special class of non-Newtonian fluids for which the exact solution is reasonably 

possible is the visco-elastic fluids, that were first introduced by Rivlin and Ericksen [29]. Rajagopal [22-23] 

established the exact solutions for creeping flow and for unidirectional flow. Hayat et al. [14, 16] and Siddiqui et 

al. [30] extended that idea for the periodic flows. Rajagopal and Gupta [26] also discussed the exact flow 

between the rotating parallel plates. Veera Krishna.M  and S.G. Malashetty [34] discussed unsteady flow of an 

incompressible electrically conducting second grade fluid through a composite medium in a rotating parallel 

plate channel and the problem extended for taking the hall currents by Veera Krishna.M  and S.G. Malashetty 

[35].  

 The rate of heat transfer can be controlled by using the intensity of the magnetic field. The inclusion of 

magnetic field in the study of second grade fluid flow has many practical applications for example, the cooling 

of turbine blades. Magnethydrodynamics (MHD) provides a mean of cooling the turbine blade and keeping the 

structural integrity of the nose cone. Hence, the boundary layer MHD flows of non-Newtonian fluids have 
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drawn the attention of many researchers since the past few decades. Hayat et al. [17] discussed the unsteady 

flow of an incompressible second grade fluid in a circular duct with a given volume flow rate variation taking 

the effects of Hall current. Hydro magnetic transport through porous media has received considerable attention 

owing to applications in materials processing, chemical engineering geophysics, astrophysical flows. Magnetic 

fields induce many complex phenomena in an electrically conducting flow regime including Hall currents, ion-

slip effects, Joule, Alfven waves in plasma flows, etc. [5]. Those types of effects can have a considerable 

influence on heat and mass transfer and flow dynamics. For ex. in ionized gases with low density subjected to a 

strong strength of magnetic field, the electrical conductivity perpendicular to the magnetic field is lowered 

owing to free spiralling of electrons and ions about the magnetic lines of force prior to collisions, a current is 

thereby induced which is mutually perpendicular to both electrical and magnetic fields, constituting the Hall 

current effect. Under very high magnetic fields, in ionized plasmas, the diffusion velocity of ions becomes 

significant and ion-slip effects arise. Hall current effects however tend to be more dominant. In magnetic 

material fabrication applications, porous media are frequently used to regulate flow regimes. A considerable 

number of studies, both steady and transient, have appeared examining various hydro magnetic convective flows 

in Darcian regimes, which are viscous-dominated and in which Reynolds numbers are generally less than 10. 

Anand Rao [1] investigated the magneto-convective flow through a Darcian porous medium in planar channel. 

Ram [27] discussed analytically the transient hydro magnetic natural convection flow with Hall current effects 

in a Darcian regime and this extended to consider the supplementary effects of mass transfer [28]. Takhar and 

Ram [32] have investigated hall current effects on natural MHD convection flow through a porous medium. 

Kafoussias [18] has studied the hydro magnetic natural convection flow over an isothermal conical body to a 

non-homogenous porous regime. Takhar et al. [33] further reported on heat generation and hall currents in hydro 

magnetic convection flow through porous. Ezzat and Zakaria [10] discussed the oscillating hydro magnetic 

visco-elastic flow through porous medium making use of the state space technique. Kamel [19] more recently 

considered the transient one dimensional magneto convective heat and mass transfer through porous medium 

over an infinite vertical porous plate using the Laplace transform technique and the state space approach. 

Krishna et al. [20] have investigated hydromagnetic convection boundary layer heat transfer through porous 

medium in a rotating parallel plate channel, presenting analytical solutions and discussing the structure of the 

different boundary layers formed. Zakaria [37] discussed on the magneto hydro dynamic transient natural 

convection flow of a couple stress fluid through porous medium with relaxation effects also using the state space 

solution approach. Recently, Beg et al. [3] have studied the oscillatory hydro magnetic convection through 

porous regime using a perturbation method. El-Kabeir et al. [9] investigated the group transformation method to 

study transient hydro magnetic convection boundary layer flow through porous medium.  Joule and viscous 

dissipation effects on fluid flow can be important in numerous magneto fluid engineering systems. Kinetic 

energy dissipated in the flow field due to retardation by the magnetic field manifests as Joule or Ohmic heating. 

Several researchers have been considered on hydro magnetic flows through porous medium in duct or channel 

with Joule and viscous dissipation effects. El-Amin [7] has studied viscous heating, Joule heating and also 

inertial porous drag effects on forced magneto convection boundary layers over a non-isothermal horizontal 

cylinder through porous media. Chen [4] analyzed numerically the magneto hydro dynamic natural convection 

heat and mass transfer with Joule and viscous heating. Studies of Couette magneto hydro dynamic flows, 

although without consideration of porous media effects include the analysis by Soundalgekar et al. [31] and 

more recently the transient model presented by Attia H.A.[13]. Palani and Srikanth [38] have explained the mass 

transfer effects on MHD flow past a semi infinite vertical plate. Chaudhary and Jain [39] have analyzed the 

combined heat and mass diffusion in a MHD free convective flow past a surface embedded in a porous medium. 

Recently, we explore the flow of a Jeffery fluid [40, 41] over a stretched sheet subject to power law temperature 

in the presence of heat source/sink. Abbasi et al. [42] have studied the peristaltic flow in an asymmetric channel 

with convective boundary conditions and Joule heating. Mixed convective heat and mass transfer analysis for 

peristaltic transport in an asymmetric channel with Soret and Dufour effects was investigated by Abbasi et al. 

[43]. Soret and Dufour effects on the peristaltic transport of a third-order fluid were studied by Hayat et al. [44]. 

Heat transfer in viscous free convective fluctuating MHD flow through porous media past a vertical porous plate 

with variable temperature is analyzed by Mishra et al. [45]. Makinde [46] discussed MHD heat and mass 

transfer over a moving vertical plate with a convective surface boundary condition. Recently, Tripati et al. [47] 

discussed MHD mixed convection flow of a visco-elastic fluid embedded in a porous medium over a moving 

vertical plate taking the radiation and mass transfer into account. Veera Krishna.M and G.Dharmaiah [48] 

discussed Heat Transfer on unsteady MHD Couette flow of a Bingham fluid through a Porous medium in a 

parallel plate channel with uniform suction and injection under the effect of inclined magnetic field and taking 

Hall currents. Veera Krishna.M and Devika Rani [49] investigated unsteady MHD mixed convection oscillatory 

flow of viscous incompressible fluid in a rotating vertical channel with radiation effects. Radiative heat transfer 

on unsteady MHD oscillatory visco-elastic flow through porous medium in a parallel plate channel was studied 

by Veera Krishna et al. [50].  
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 Motivated the above studies, the aim of the present study was to analyze the effects on  the unsteady 

MHD free convection flow of an incompressible electrically conducting second grade fluid through porous 

medium bounded by an infinite vertical porous surface in the presence of heat source and chemical reaction in a 

rotating system taking hall current into account. 

 

II. FORMULATION AND SOLUTION OF THE PROBLEM 
 We consider the unsteady MHD free convection flow of an electrically conducting viscous 

incompressible second grade fluid bounded by a vertical porous surface in a rotating system in the presence of 

heat source and chemical reaction subjected to a uniform transverse magnetic field of strength B0 normal to plate 

and taking hall current into account. The temperature on the surface varies with the time about a non-zero 

constant mean while the temperature of free stream is taken to be constant. We consider that the vertical infinite 

porous plate rotates with the constant angular velocity about an axis is perpendicular to the vertical plane 

surface. The physical configuration of the problem is as shown in Fig. 1. 

 

 
Figure 1: Physical configuration of the problem 

 

 We choose a Cartesian co-ordinate system O( )x,y,z  
such that x, y axes respectively are in the vertical 

upward and perpendicular directions on the plane of the vertical porous surface 0z  , while z-axis normal to it. 

The interaction of Coriolis force with the free convection sets up a secondary flow in addition to primary flow 

and hence the flow becomes three dimensional. With the above frame of reference and assumptions, all the 

physical variables are functions of z and t alone.  In the equation of motion, along x-direction the x-component 

current density 0 yB J and the y-component current density 0 xB J . 

 The constitutive equation for the stress T in an incompressible fluid of second grade is given by 

 1 1 2 2 1( )T t pI A A A          (2.1) 

 Where,   is the dynamic viscosity 1 , 2  are the normal stress moduli and the kinematical tensors 

1A  and 2A  are defined through [Rivlin et al. (29)]. 

    1 ,
T

A gradV gradV     1
2 1 1

TDA
A A gradV gradV A

Dt
    (2.2) 

Where, V is the velocity, grad the gradient operator and D/Dt the material time derivative.  

 

The unsteady hydro magnetic flow in a rotating co-ordinate system is governed by the equation of 

motion, continuity equation and the Maxwell equations in the form. 

 2
V

(V . )V V ( r ) .T J B
t

   
 

           
 

   (2.3) 

 0.V     (2.4) 

 0.B     (2.5) 

 mB J     (2.6) 

 
B

E
t


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
   (2.7) 
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Where, J is the current density, B is the total magnetic field, E is the total electric field, m   is the magnetic 

permeability and r is radial co-ordinate given by
2 2 2r x y  . When the strength of the magnetic field is very 

large, the generalized ohm’s law is modified to include the hall current so that   

  
0

1e e
e

e

J J B E V B P
B e

 




 
       

 
   (2.8) 

 Where, e  is the cyclotron frequency of the electrons, e  is the electron collision time,   is the 

electrical conductivity, e  is the electron charge and Pe is the electron pressure. The ion-slip and thermo electric 

effects are not included in equation (2.8). Further it is assumed that e e   ~ 0 (1) and 1i i ,  where i and i  

are the cyclotron frequency and collision time for ions respectively. The unsteady hydro magnetic flow in a 

rotating system is governed by the equation of motion for momentum, the conservation of mass, energy and the 

equation of mass transfer, under usual Boussinesq approximation, are given by 

 0
w

z





   (2.9) 
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1
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2 ( ) ( )y

u u u u
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 
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


 

   
         
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 (2.10) 
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1

2 x
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w u B J v

t z Kz z t

 
 



   
     
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   (2.11) 

 
1

0
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w
z k
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


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   (2.12) 
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   (2.14) 

        where, ( )u,v   is the velocity components along x and y directions, T is the temperature of the fluid, C is the 

species concentration, 1  is the normal stress modulus,   is the density of the fluid,    is the electrical 

conductivity of the fluid, 1K  is the permeability of the porous medium, 0B  is the uniform magnetic field of 

strength,   is the coefficient of kinematic viscosity, k  is the thermal conductivity of the fluid, pC  is the specific 

heat of the fluid at constant pressure,   is the volumetric coefficient of the thermal expansion,   is the 

volumetric coefficient of the thermal expansion with concentration,  g  is the acceleration due to gravity, D is 

the thermal diffusivity of the fluid, 1S  is the heat source/sink parameter and cK  is the chemical reaction 

parameter.  In equation (2.8) the electron pressure gradient, the ion-slip and thermo-electric effects are 

neglected.  We also assume that the electric field  0E  under assumptions reduces to  

 x y 0J m J σB v     (2.15) 

 y x 0J m J σB u     (2.16) 

        Where e em    is the hall parameter.  

On solving equations (2.15) and (2.16) we obtain  

 ( )0
x 2

σB
J v mu

1 m
 


   (2.17) 

 ( )0
y 2

σB
J mv u

1 m
 


   (2.18) 

Using the equations (2.17) and (2.18), the equations of motion with reference to a rotating frame are given by 

 
22 3
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2 2 2
1
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σBu u u u
w v mv u u

t z Kz z t m
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 



   
       

     
  

 ( ) ( )g T T g C C 
       (2.19) 
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The corresponding boundary conditions are 

 0, ( ) , ( )i t i t
w w w wu v T T T T e C C C C e             at  0z   (2.21) 

 0, ,u v T T C C        at  z  (2.22) 

 Where 1   and   is the frequency of oscillation. There will be always some fluctuation in the 

temperature, the plate temperature is assumed to vary harmonically with time. It varies from ( )w wT T T   as 

t  varies from 0  to / 2  . Now there may also occur some variation in suction at the plate due to the variation 

of the temperature, here we assume that, the frequency of suction and temperature variation are same. 

 Integrating the equation (2.9), we get 

 0( ) (1 )i tw t w Ae       (2.13) 

Where, A  is the suction parameter, 0w  is the constant suction velocity and   is the small positive number such 

that 1A .   The equation (2.12) determines the pressure distribution along the axis of rotation and the absence 

of p / y   in the equation (2.11) implies that there is a net cross flow in the y  direction. We choose, 

q u iv   and taking into consideration (2.23), the momentum equation (2.19) and (2.20) can be written as 

 
22 3
01

0 2 2
1

(1 ) 2
(1 )

i t Bq q q q
w Ae i q q q

t z im Kz z t

  
  

 

   
      

    
  

 ( ) ( )g T T g C C 
       (2.24) 

Introducing the following non-dimensional quantities: 
2

0 0

2
0 0w w

w z twT T C Cq
z* , q* , T* , C* , * , t*

w T T C C w




 
 

 

 
     

 
 

 Making use of non-dimensional quantities (dropping asterisks), the equation (2.24), (2.13) and (2.14) can 

be written as 

 
2 3 2

2 2
(1 ) 2 Gr Gm

1

i tq q q q M 1
Ae iRq q T C

t z im Kz z t

 
    

                

   (2.25) 
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2
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Pr

i tT T T
Ae ST

t z z


  

   
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   (2.26) 
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Sc

i tC C C
Ae C

t z z


  

   
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   (2.27) 

Where,   

2
2 0

2
0

B
M

w

 


 is the Hartmann number (Magnetic field parameter), 

2
1 0

2

K w
K

ν
 is the Porosity 

parameter, 2
0

R
w


 is the Rotation parameter, 

2
0

2

1w

ν





 is the second grade fluid parameter, 

3
0

( )
Gr wg T T

w

 
  is the thermal Grashof number, 

3
0

( )
Gm

*
wg C C

w

  
  is the mass Grashof number, 

Pr
pC

k


 is Prandtl parameter,  1

0

S
S

w


 is the Source parameter, 

2
0

Kc cK

w


  chemical reaction parameter, 

e em    is the hall parameter and Sc
D


 is the Schmidt number. 

The corresponding non-dimensional boundary conditions 

 0 1 1i t i tq , T e ,C e          at   0z   (2.28) 

 0q T C            at  z   (2.29) 

 In order to reduce the system of partial differential equations (2.25) – (2.27) under their boundary 

conditions (2.28) and (2.29), to a system of ordinary differential equations in the non-dimensional form, In view 

of the equation (2.23) and oscillating plate temperature T , The solution form of the equations (2.25), (2.26) and 

(2.27) are, 

 0 1( ) ( ) ( ) i tq z,t q z q z e      (2.30) 

 0 1( ) ( ) ( ) i tT z,t T z T z e      (2.31) 
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 0 1( ) ( ) ( ) i tC z,t C z C z e      (2.32) 

 These equations (2.30) – (2.32) are valid for small amplitude of oscillation. Substituting from (2.30) to 

(2.32) into the system of equations (2.25) – (2.27) respectively, and equating the harmonic and non-harmonic 

terms, we get 

 
2 2
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0 0 02
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d q dq M 1
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The corresponding boundary conditions 
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1 1 1

0 1 1

0 1 1

q ,T ,C

q ,T ,C

   


   
   at   0z   (2.39) 

 
0 0 0

1 1 1

0

0

q T C

q T C

   


   
    at    z   (2.40) 

 The solutions of the equations (2.35) and (2.36) using the boundary conditions (2.39) and (2.40), we 

obtain T0 and T1

 
, the equation (2.31) becomes,

 

 5 52 25

6
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C z C za z a z i tA C
T z,t e e e e e

C


 
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   (2.41) 

          The solutions of the equations (2.37) and (2.38) using the boundary conditions (2.39) and (2.40), we 

obtain C0 and C1 , the equation (2.32) becomes, 

 2 4 4 22

3

Sc
( ) ( )C z a z a z C z i tA C

C z,t e e e e e
C


 

    
 

   (2.42) 

          The solutions of the equations (2.33) and (2.34) using the boundary conditions (2.39) and (2.40), we 

obtain q0 and q1, the equation (2.30) becomes, 

                                            5 62

1 2 3( , )
C z a zC zq z t b e b e b e   

 

  8 5 62 4 2

17 12 13 14 15 16
a z C z a za z a z C z i tC e C e C e C e C e C e e          (2.43) 

 The equation (2.43) reveals that the steady part of the velocity field has three layer character while the 

oscillatory part of the fluid field exhibits a multilayer character. From equations (2.41) and (2.42), we observe 

that in case of considerably slow motion of the fluid. i.e., when the viscous dissipation term is neglected, the 

temperature profiles are mainly affected by Prandtl number (Pr) and Source parameter (S): and the concentration 

profiles are affected by Schimdt number (Sc) and chemical reaction parameter (KC) of the fluid respectively.  

Considering 

0 0 0 1 1 1andq u iv q u iv   
 

 Now it is convenient to write the primary and secondary velocity fields in terms of the fluctuating parts, 

separating the real and imaginary parts from the equation (2.43) and taking only the real parts as they have 

physical significance. The velocity distribution of the flow field can be expressed as in fluctuating parts,  

0 1( , ) ( ) ( ) i tq z t q z q z e  
 

0 0 1 1 1 1cos sin cos sinu iv u iv u t i u t i v t v t             
 

Comparing real and imaginary parts, 

 ))sincos()((),( 1100 tvtuzuwtzu      (2.44) 

 ))cossin()((),( 1100 tvtuzvwtzv      (2.45) 
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Hence the expression for the transient velocity profiles for   

2t /    are given by  

 0 0 1( ( ) ( ))
2

u z, w u z v z





 
  

 
   (2.46) 

 0 0 1( ( ) ( ))
2

v z, w v z u z





 
  

 
   (2.47) 

Skin friction: 

The non-dimensional skin friction at the plate 0z   in term of amplitude and phase angle is given by  

                      0 1

0 00

i t

z zz

dq dqdq
e

dz dz dz

 
 

    
      
    

 

 5 1 2 2 3 6 8 17 2 12 5 13 4 14 2 15 6 16( ) i tC b C b C a a C a C C C a C C C a C e             (2.48) 

The xz  and yz  components of skin friction at the plate are given by 

0 1

00
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zz

du dv

dz dz
 



   
    

  
  

and  0 1

00

yz

zz

dv du

dz dz
 



   
    

  
 

 

Rate of heat transfer (Nusselt number): 

 The rate of heat transfer co-efficient at the plate 0z   in term of amplitude and phase angle is given by  

               
0 51

5 2 2 5
60 00

Pr
( )i t i t

z zz

dT A CdTdT
Nu e C a a C e

dz dz dz C

  
 

     
           
      

             (2.49) 

 

Rate of mass transfer (Sherwood number): 

 The rate of mass transfer co-efficient at the plate 0z   in term of amplitude and phase angle is given 

by  

               
0 1 2

2 4 4 2
30 00

Sc
( )i t i t

z zz

dC dC A CdC
Sh e C a a C e

dz dz dz C

  
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     
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            (2.50) 

 

 

III. RESULTS AND DISCUSSION 
 

 We discussed the unsteady magnetohydrodynamic free convection flow of an incompressible 

electrically conducting second grade fluid bounded by an infinite vertical porous surface in a rotating system 

taking hall current into account under the presence of heat source and chemical reaction. The closed form 

solutions for the velocity q u iv  , temperature   and concentration C  are obtained making use of perturbation 

technique. The velocity expression consists of steady state and oscillatory state. It reveals that, the steady part of 

the velocity field has three layer characters while the oscillatory part of the fluid field exhibits a multi layer 

character. For computational purpose we are fixing the values 0 05A . ; 5 2/  ; 0 001.  .  

 The Figures (2-13) shows the effects of non-dimensional parameters on velocity such as M the 

Hartmann number,   the second grade fluid parameter, K permeability parameter, m hall parameter, R rotation 

parameter, S heat source parameter, Gr Grashof number, Gm mass Grashof number, Kc chemical reaction 

parameter, Pr the Prandtl number and t time; the Figure (5) exhibit the temperature distribution with different 

variations in the governing parameters S, Pr, the frequency of oscillation   and time t; and the Figure (6) 

depicts the concentration profiles with variations in Schmidt number Sc and chemical reaction parameter Kc, the 

frequency of oscillation   and time t. 

 It is noticed that, from the Figures (2-5) the magnitude of the velocity u reduces with increasing the 

intensity of the magnetic field (Hartmann number M) while it enhances with increasing second grade fluid 

parameter   or permeability of porous medium K or hall parameter m throughout the fluid region. The 

magnitude of the velocity component v enhances with increasing M or second grade fluid parameter   or 

permeability of porous medium K or hall parameter m. The application of the transverse magnetic field plays the 

important role of a resistive type force (Lorentz force) similar to drag force (that acts in the opposite direction of 

the fluid motion) which tends to resist the flow thereby reducing its velocity. The resultant velocity q  enhances 

with increasing , K and m; and reduces with increasing M. We observed that lower the permeability of porous 

medium lesser the fluid speed in the entire fluid region.  
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Figure 2. The velocity Profiles for u and v against M 

1, 1, 1,R = 1.2,S = 2,Gr = 5,Gm = 10,Sc = 0.22,Kc = 2, Pr = 0.71, = 0.2K m t     

 

 

 
Figure 3. The velocity Profiles for u and v against   

2, 1, 1,R = 1.2,S = 2,Gr = 5,Gm = 10,Sc = 0.22,Kc = 2, Pr = 0.71, = 0.2M K m t    

 

 

 
Figure 4. The velocity Profiles for u and v against K  

2, 1, 1,R = 1.2,S = 2,Gr = 5,Gm = 10,Sc = 0.22,Kc = 2, Pr = 0.71, = 0.2M m t    

 

  

 

 From the Figures (6-9) depicts the velocity component u reduces with increasing the rotation parameter 

R while it enhances with increasing source parameter S, Grashof number Gr and mass Grashof number Gm. The 

profiles show the magnitude of the velocity component v reverse trend whenever there is increasing rotation 

parameter R or source parameter S or Gr or Gm. The resultant velocity q  increases with increasing R or Gr or 

Gm; and reduces with increasing S.  
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Figure 5. The velocity Profiles for u and v against m  

2, 1, 1,R = 1.2,S = 2,Gr = 5,Gm = 10,Sc = 0.22,Kc = 2, Pr = 0.71, = 0.2M K t    

 

 

 
Figure 6. The velocity Profiles for u and v against R  

2, 1, 1, 1, S = 2,Gr = 5,Gm = 10,Sc = 0.22,Kc = 2,Pr = 0.71, = 0.2M m K t     

 

 

 
Figure 7. The velocity Profiles for u and v against S 

2, 1, 1, 1,R = 1.2,Gr = 5,Gm = 10,Sc = 0.22,Kc = 2,Pr = 0.71, = 0.2M m K t     

 

 Further, it is to observed that from Figures (10-13) the velocity u reduces and v enhances with 

increasing Schmidt number Sc, first the velocity u increases and then experiences retardation where as v reduces 

in the entire fluid region with increasing chemical reaction parameter Kc. With increasing Prandtl number Pr the 

velocity u reduces and v enhances in the complete flow field. This implies that an increase in Prandtl number Pr 

leads to fall the thermal boundary layer flow. This is because fluids with large have low thermal diffusivity 

which causes low heat penetration resulting in reduced thermal boundary layer.  
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Figure 8. The velocity Profiles for u and v against Gr  

2, 1, 1, 1,R = 1.2,S = 2,Gm = 10,Sc = 0.22,Kc = 2,Pr = 0.71, = 0.2M m K t     

 

 

 

 
Figure 9. The velocity Profiles for u and v against Gm  

2, 1, 1, 1,R = 1.2,S = 2,Gr = 5, Sc = 0.22,Kc = 2,Pr = 0.71, = 0.2M m K t     

 

 

 

 
Figure 10. The velocity Profiles for u and v against Sc  

2, 1, 1, 1,R = 1.2,S = 2,Gr = 5,Gm = 10,Kc = 2,Pr = 0.71, = 0.2M m K t     

 

 

 Likewise the velocity u enhances and v decreases with increasing the frequency of oscillation   and 

time t. The resultant velocity reduces with increasing Kc or Sc and increases with increasing Pr and time t.  
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Figure 11. The velocity Profiles for u and v against Kc  

2, 1, 1, 1,R = 1.2,S = 2,Gr = 5,Gm = 10,Sc = 0.22,Pr = 0.71, = 0.2M m K t     

 

 
Figure 12. The velocity Profiles for u and v against Pr  

2, 1, 1, 1,R = 1.2,S = 2,Gr = 5,Gm = 10,Sc = 0.22,Kc = 2, = 0.2M m K t     

 

 
Figure 13. The velocity Profiles for u and v against t  

2, 1, 1, 1,R = 1.2,S = 2,Gr = 5,Gm = 10,Sc = 0.22,Kc = 2,Pr = 0.71M m K     

 

 The temperature profiles exhibit in the Figures 14(a-d) for different variations in source parameter S, 

Prandtl number Pr, the frequency of oscillation   and time t. It is observed that Prandtl number Pr leads to 

decrease the temperature uniformly in all layers being the heat source parameter fixed. It is found that the 

temperature decreases in all layers with increase in the heat source parameter S. It is concluded that the heat 

source parameter S and Prandtl number Pr reduces the temperature in all layers. The temperature increases with 

increasing the frequency of oscillation   and time t.  The concentration profiles are shown in the Figures 15    

(a-d) for different variations in Schmidt number Sc, the chemical reaction parameter Kc, the frequency of 

oscillation   and time t. It is noticed that the concentration decreases at all layers of the flow for heavier species 

such as CO2, H2O and NH3 having Schmidt number 0.3, 0.6 and 0.78 respectively.  
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Figures 14 (a-d).  The temperature profiles for    against S, Pr,   and t 

 

 

 
Figures 15 (a-d).  The Concentration profiles for C   against S, Pr,   and t 
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 It is observed that for heavier diffusing foreign species, i.e., the velocity reduces with increasing 

Schmidt number Sc in both magnitude and extent and thinning of thermal boundary layer occurs. Likewise, the 

concentration profiles decrease with increase in chemical reaction parameter Kc. It is concluded that the 

Schmidt number and the chemical reaction parameter reduces the concentration in all layers. The concentration 

increases with increasing the frequency of oscillation   and time t. 

 

Table. 1. Skin Friction 

 
M   K m R S Gr Gm Sc Kc Pr 

xz  yz  

2 1 2 1 1.2 2 5 10 0.22 2 0.71 5.620268 -2.685635 

3 1 2 1 1.2 2 5 10 0.22 2 0.71 5.280022 -2.431979 

4 1 2 1 1.2 2 5 10 0.22 2 0.71 4.994062 -2.238832 

2 2 2 1 1.2 2 5 10 0.22 2 0.71 5.619835 -2.675965 

2 3 2 1 1.2 2 5 10 0.22 2 0.71 5.519604 -2.646093 

2 1 3 1 1.2 2 5 10 0.22 2 0.71 5.630642 -2.798579 

2 1 4 1 1.2 2 5 10 0.22 2 0.71 5.633692 -2.856412 

2 1 2 2 1.2 2 5 10 0.22 2 0.71 5.781484 -3.117423 

2 1 2 3 1.2 2 5 10 0.22 2 0.71 5.936172 -3.295582 

2 1 2 1 1.4 2 5 10 0.22 2 0.71 5.368144 -2.707081 

2 1 2 1 1.8 2 5 10 0.22 2 0.71 4.939473 -2.707612 

2 1 2 1 1.2 3 5 10 0.22 2 0.71 5.513113 -2.599534 

2 1 2 1 1.2 4 5 10 0.22 2 0.71 5.431000 -2.539932 

2 1 2 1 1.2 2 6 10 0.22 2 0.71 5.938664 -2.802592 

2 1 2 1 1.2 2 7 10 0.22 2 0.71 6.257066 -2.919556 

2 1 2 1 1.2 2 5 5 0.22 2 0.71 3.606121 -1.635212 

2 1 2 1 1.2 2 5 8 0.22 2 0.71 4.814612 -2.265465 

2 1 2 1 1.2 2 5 10 0.3 2 0.71 5.438912 -2.441874 

2 1 2 1 1.2 2 5 10 0.6 2 0.71 4.923213 -1.885492 

2 1 2 1 1.2 2 5 10 0.22 4 0.71 5.310184 -2.286522 

2 1 2 1 1.2 2 5 10 0.22 7 0.71 4.999061 -1.957933 

2 1 2 1 1.2 2 5 10 0.22 2 3 4.900980 -2.261319 

2 1 2 1 1.2 2 5 10 0.22 2 7 4.533414 -2.153403 

 

  

Table. 2. Nusselt Number 

 
S Pr   t  Nu 

2 0.71 2/5  0.2 -1.59653 

3 0.71 2/5  0.2 -1.85503 

4 0.71 2/5  0.2 -2.07512 

2 3 2/5  0.2 -4.36861 

2 7 2/5  0.2 -8.61827 

2 0.71 2/7  0.2 -1.59538 

2 0.71 2/9  0.2 -1.59431 

2 0.71 2/5  0.4 -1.59854 

2 0.71 2/5  0.6 -1.60026 

 

Table. 3. Sherwood Number 

 
Sc Kc   t  Sh 

2 0.22 2/5  0.2 -0.781334 

3 0.22 2/5  0.2 -0.928700 

4 0.22 2/5  0.2 -1.053333 

2 0.3 2/5  0.2 -0.937762 

2 0.6 2/5  0.2 -1.434060 

2 0.22 2/7  0.2 -0.780754 

2 0.22 2/9  0.2 -0.778487 

2 0.22 2/5  0.4 -0.782446 

2 0.22 2/5  0.6 -0.783434 
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 It is noted from the table 1 that the magnitudes of both the skin friction components xz  and yz  

increase with increase in permeability parameter K, hall parameter m, thermal Grashof number Gr and mass 

Grashof number Gm, and where as it reduces with increase in Hartmann number M, second grade fluid 

parameter , heat source parameter S, Schmidt number Sc, chemical reaction parameter Kc and Prandtl number 

Pr. Likewise the rotation parameter R enhances skin friction component xz  and reduces skin friction component

yz .   

 From the table 2 that the magnitude of the Nusselt number Nu increases for the parameters heat source 

parameter S and Prandtl number Pr or time t, and it reduces with the frequency of oscillation .  Also from the 

table 3, the similar behaviour is observed. The magnitude of the Sherwood number Sh increases for increasing 

the parameters Schmidt number Sc and chemical reaction parameter Kc or time t and reduce with increasing the 

frequency of oscillation  . 

 

IV. CONCLUSIONS 

 We have considered the unsteady MHD free convection flow of an incompressible electrically 

conducting second grade fluid through porous medium bounded by an infinite vertical porous surface in the 

presence of heat source and chemical reaction in a rotating system taking hall current into account. The 

conclusions are made as follows 

1. The resultant velocity enhances with increasing , K, m, R, Gr, Gm, Pr and time t; and reduces with 

increasing M, S, Kc and Sc.  

2. Lower the permeability of porous medium lesser the fluid speed in the entire fluid region.  

3. The parameters S and Pr reduce the temperature in all layers. The temperature increases with increasing   

and time. 

4. The Schmidt number and Kc reduce the concentration in all layers. The concentration increases with 

increasing   and time.  

5. The skin friction components xz  and yz  increase with increase in K, m, Gr and Gm, and where as it 

reduces with increase in M,  , S, Sc, Kc and Pr. The rotation parameter  R enhances skin friction 

component xz  and reduces yz .   

6. The heat transfer coefficient increases with increasing S and Pr or time span, and it reduces with  .  

7. The Sherwood number enhances for increasing the parameters Schmidt number Sc and chemical reaction 

parameter Kc or time span t and reduces with increasing . 
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