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Abstract: The finite difference method is a direct interpretation of the differential equation into a discrete 

domain so that it can be solved using a numerical method. It is a direct representation of the governing equation 

(
𝜕𝑓

𝜕𝑥
) = (𝑓𝑖+1 − 𝑓𝑖)/(𝑥𝑖+1 − 𝑥𝑖). Using the discontinuous but connected regions, the governing equation is defined 

within the interval.In this paper, an initial-Boundary value problem of the parabolic type is investigated. The 

explicit and implicit schemes were established. The numerical solution obtained using Crank-Nicolson’s finite 

difference equations is found to agree with existing analyzing results at discretized nodes of uniform interval.  

 

I. Introduction 
Parabolic equations arise in the study of heat conduction and diffusion processes [i]. The simplest example is the 

one dimensional heat equation. 
𝜕𝑢

𝜕𝑡
        =    

𝜕2𝑢

𝜕𝑥2                                    [1.1] 

 

The two kinds of fundamental parabolic equation are the initial value and the initial-boundary value problem. 

An initial value problem here is that of finding a function 𝑢(𝑥, 𝑡) which  

(a) Is defined and continuous for 𝑥 ∈(−∞, ∞),t ≥ 0 

(b) Satisfies the equation (1.1) for 𝑥 ∈(−∞, ∞), t > 0 

(c) Satisfies the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥) for 

       𝑥 ∈ (−∞, ∞), where 𝑓 𝑥  is a given continuous. 

 

An initial-boundary value problem for the parabolic equation (1.1) is that of finding a function 𝑢(𝑥, 𝑡) which  

(i) is defined and continuous for 𝑥 ∈  𝑜 , 𝑎 , 𝑡 ≥ 0  

(ii) satisfies equation (1.1) for 𝑥 ∈  𝑜 , 𝑎 , t > 0 
(iii) satisfies the initial and boundary conclusions  

𝑢(𝑥, o) = 𝑓 𝑥 , 0 ≤ 𝑥 ≤ 𝑎                                                                                  (1.2) 

 

 

𝑢(𝑥, o)= 𝑔1 𝑡  𝑎𝑛𝑑 U a, t = 𝑔2 𝑡 , 𝑡 ≥ 0                                                               (1.3) 

 

𝑎 > 0 𝑎𝑛𝑑 𝑡𝑕𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 𝑥 , 𝑔1 𝑡 ,𝑔2(t) are given and must  satisfy. 

𝑔1   0  = 𝑓 0 , 𝑔2   0 = 𝑓 𝑎                                                                                      (1.4) 

 

Although analytical solution may exist the numerical treatment is achieved by replacing the unbounded 

range 0≤ 𝑡 ≤ ∞ 𝑏𝑦 0 ≤ 𝑡 ≤ 𝑇. The finite difference approximation of (1.1) may be carried out in several ways 
resulting into explicit and implicit schemes. 

Explicit scheme concerns calculating data at the next time level from an explicit formular involving 

data from previous time level. This scheme leads to (stability) restriction on the maximum allowable time step, 

∆𝑡. 
Implicit scheme concerns data from the next time level occurring on both sides of the difference 

scheme. That necessitates solving a system of linear equations. There is no stability restriction on the maximum 

time step. 

 

II. Crank- Nicolson Scheme (Implicit scheme) 
Consider the one dimensional that conduction equation 

𝜕𝑢

𝜕𝑡
 = 𝐶2  

𝜕2𝑢

𝜕𝑥2
 

Where C2 =    
𝐾

𝑠𝑝
  𝑖𝑠 𝑡𝑕𝑒 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑕𝑒 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑐𝑚2/𝑠𝑒𝑐. 
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From Taylor’s formula [2] 

𝑢(𝑥 + 𝑕, 𝑦) = 𝑢(𝑥, 𝑦)+ 𝑕
𝜕𝑢

𝜕𝑥
+  

1

2!  
𝑕2  

𝜕2𝑢

𝜕𝑥2 +  .  .  .                                                     (2.2)  

 

Truncate after 
𝜕𝑢

𝜕𝑥
 

𝜕𝑢

𝜕𝑥
=    

𝑢 𝑥+𝑕,𝑦 − 𝑢(𝑥,𝑦)

𝑕
     Forward difference formula                                         (2.3) 

                                         

Similarly:  
𝜕𝑢

𝜕𝑥
=   

𝑢 𝑥+𝑕,𝑦 − 𝑢(𝑥−𝑕,𝑦)

𝑕
                 Backward difference formula                       (2.4) 

 

Also       
𝜕𝑢

𝜕𝑥
=    

𝑢 𝑥 ,+𝑦+,𝑘 − 𝑢(𝑥,𝑦)

𝑘
                                                                         (2.5) 

 

 
𝜕𝑢

𝜕𝑥
=   

𝑢 𝑥+𝑕,𝑦 − 𝑢(𝑥−𝑕,𝑦)

2𝑕
                Central difference formula                            (2.6) 

 
𝜕2𝑢

𝜕𝑥2 =   
𝑢 𝑥−𝑕,𝑦 − 2𝑢 𝑥.𝑦 + 𝑢(𝑥−𝑕,𝑦)

𝑕2                                                                          (2.7) 

 

 

When we substitute the above formula in the parabolic equation and setting  

∝     =  
𝒌𝒄𝟐

𝒉
 , we obtain  

𝑢𝑖,𝑗+1   ∝ 𝑢𝑖−1.𝑗  +  1 − 2 ∝ 𝑢𝑖,𝑗 +∝ 𝑢𝑖−1.𝑗                                                              (2.8) 

 

This is the explicit finite difference scheme for the one dimension heat conduction equation. This 

explicit scheme is not stable except for ∝≤
1

2
  

For no restriction on ∝ , the Crank-Nicolson’s method is used.  Here, 
𝜕2𝑢

𝜕𝑥2 is replaced by the average of 

its central- difference approximations on the Jth and (J+1)th time rows. 

Thus: 
𝑢𝑖,𝐽 +1− 𝑢𝑟𝑖𝑗

𝑘
      = 

𝐶2

2𝑕2   [𝑢𝑖−𝑖,𝑗   -  2𝑢𝑖 ,𝑗  +𝑢𝑖+1,𝑗   - 𝑢𝑖−1,𝑗+𝑖  +2𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1]…  (2.9) 

 

Simplify and replace ∝ =  
𝑲𝒄𝟐

𝒉𝟐
, we obtain  

−∝ 𝑢𝑖−1,𝑗+1+ (2 +2∝) 𝑢𝑖,𝑗+1-∝ 𝑢𝑖+1,𝑗+1= ∝ 𝑢𝑖−1,𝑗+ (2+2∝)𝑢𝑖,𝑗 + ∝ 𝑢𝑖+1.𝑗…(2.10) 

 

This is the Crank-Nicolson’s formula with computation. The scheme is valid for all finite values of ∝ . In 

addition it has a higher degree of accuracy o(h2 + k2) [3]. 

 

III. Numeric illustration 
3.1 Example 

Consider the initial- boundary problem 

𝑢𝑡    = 𝑢𝑥𝑥   

Defined on D = {(𝑥,𝑡)/0 < 𝑥 < 3, 𝑡 > 0} 

With initial conditions 𝑢 𝑥, 0 =𝑓 𝑥 = 𝑥2 , 0 ≤ 𝑥 ≤ 3 𝑎𝑛𝑑 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝑢 𝑜, 𝑡 = 𝑔1   𝑡  = 0, 𝑢 3, 𝑡 = 𝑔2(𝑡) = 9, 𝑡 > 0   
 Solution  

Suppose 𝑇 = 30, 𝑠𝑒𝑡 𝑕 = 1, 𝑘 = 5    

∝  =  
𝐾𝑐 2

𝑕2 = 5,   𝑐 =   1  

From the Crank-Nicolson’s formula (2.10) 

Put ∝= 5 , 𝑤𝑒 𝑕𝑎𝑣𝑒 

−5𝑢𝑖 -1, j+1 + 12𝑢𝑖 1+1  -5𝑢𝑖 + 1,j+1 = 5 𝑢 i-1,j   -  8 𝑢 i,j   + 5 𝑢 i+1,j                                                        (3.1) 
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For 𝑖 = 1,𝑗 =0 

-5𝑢0,1 + 12 𝑢 1,1 -5 𝑢 2,1  =5 𝑢 0,0   - 8 𝑢 1,0   + 5 𝑢 2,0                                               (3.2) 

 

Apply given conditions 

-5 (0,1) + 12 𝑢 1,1 -5 𝑢 2,1  =5(0)   - 8(1)   + 5(4) 12 𝑢 1,1-5 𝑢 2,1     = 12                          (3.3) 

 

For 𝑖 =2, 𝑗  =0  

-5 𝑢 1,1 + 12 𝑢 2,1 -5 𝑢 3,1   =5 𝑢 1,0      - 8 𝑢 2,0  + 5 𝑢 3,0                                             (3.4)  

 

Apply given condition  

-5 𝑢 1,1 + 12 𝑢 2,1 -5(9)   =5(1)      - 8(4)  + 5(9) 

-5 𝑢 1,1 + 12 𝑢 2,1    = 95 – 32 = 63                                                                              (3.4) 
 

Put (3.3) and (3.4) in matrix form  

 12 𝑢 1,1 -  5 𝑢 2,1   = 12 

  -5 𝑢 1,1 + 12 𝑢 2,1   = 63                                                                                           (3.5) 

               
12 −5
−5 12

  
𝑢1,1

𝑢2,1
 =  

12
63

  

 

Solving the equation simultaneous for 𝑢 1,1   and 𝑢 2,1 

                
𝑢1,1

𝑢2,1
   =    

3.8571
6.8571

                                                                                  (3.6)   

        

Continuing this way, it is shown that the solution at interior nodes are  

 
𝑢2,1

𝑢2,2
      =    

2.6328
5.6328

  

 

 
𝑈1,3

𝑈2,3
    =      

3.1574
6.1574

  ,      
𝑈1,4

𝑈2,4
      =  

2.9325
5.9325

    

 

 
𝑈1.5

𝑈2.5
    =   

3.0289
6.0289

 ,       
𝑈1.6

𝑈2.6
 ,        =     

2.9876
5.9876
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IV. Analytical Evaluation 
 For the analytical solution 

𝑢𝑡     =    𝑢𝑥𝑥                                                                                                                 
D = {(𝑥, 𝑡)/0 < 𝑥 < 3, 𝑡 > 0} 

Initial condition:𝑈(𝑥, 𝑜)  = 𝑥 2, 0≤ 𝑥 ≤ 3 

Boundary condition: 𝑢(𝑜, 𝑡)   = 0 

      𝑢(3, 𝑡)  = 9 

Solution  
Since the boundary condition are not homogeneous, separation of variables method fails. However, it is obvious 

that the solution will have a steady state solution that varies linearly in 𝑥 between 0 and 3 

𝑢 𝑥, 𝑡 =  𝑘1  +
𝑥

𝐿
    𝑘2 − 𝑘1    +   𝑢(𝑥, 𝑡)                                                     (4.1) 

 

Where 𝑢 𝑥, 𝑡  = 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

𝑘1  +
𝑥

𝐿
  𝑘2 − 𝑘1      = 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑝𝑎𝑟𝑡.  

In the above problem. 

𝑘1  = 0, 𝑘2 = 9, 𝐿 = 3   

𝑢 𝑥, 𝑡 = 3𝑥 + 𝑢(𝑥, 𝑡)   

By substitution (4.2) in the given problem, it transform to  

𝑢𝑡  =  𝑢𝑥𝑥 ,   0 < 𝑥 < 3, 𝑡 > 0                                                                                                 
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛:  𝑢 𝑜, 𝑡 = 𝑜                                                                                 

𝑢 3, 𝑡  = 0    

Initial condition: 𝑢 𝑥, 𝑜  = 𝑥2 − 3𝑥 
Using method of separation of variables [5] 

𝑈 𝑥, 𝑡  =   𝑎𝑛e− nπ 2t + sin
𝑛𝜋𝑥

3
 

∞

𝑛=1

    

 

Where an = 
2

3
 ф 𝜉 

3

0
sin(

𝑛𝜋𝑥

3
)d𝜉, ф = 𝑥2 − 3𝑥 

Hence, analytic solution of the problem is 

𝑈 𝑥, 𝑡  = 3𝑥 +   𝑎𝑛e− nπ 2 𝑡 + sin(
𝑛𝜋𝑥

3
 

∞

𝑛=1
                                                                       

3𝑥 + 𝑎1𝑒
−𝜋2𝑡 sin 

𝜋𝑥

3
 +  𝑎2𝑒

−4𝜋2
𝑡 sin  

2𝜋𝑥

3
 + ⋯ 

 

V. Conclusion 
Comparing analytic and numerical results at discrete modes, say (1,1) 

𝑈 1,1  = 3.8571   − 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙    
𝑈 1,1   = 3.8570   − 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙   
𝑒𝑟𝑟𝑜𝑟 =   0.0001(infinitesimally small) 

Hence, in conclusion, the implicit numerical solution by Crank –Nicolson’s finite difference equations agree 

with the analytic results at internal nodes of uniform interval. 
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