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Abstract: This paper deals with the boundary and initial value problems for the fractional dispersion equation 

model by using the modified variational iteration method. The fractional derivative is described in Caputo's 

sense. Tested for some examples and the obtained results demonstrate efficiency of the proposed method. The 

results were presented in tables and figure using the MathCAD 12 and Matlab software package. 
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I. Introduction 
The fractional calculus is used in many fields of science and engineering [1, 2, 3]. He‟s variational iteration 

method for solving kinds of partial differential equations, integer or fractional, order. This method is based on 

the use of Lagrange multipliers of a parameter in a functional. 
In most of these equations analytical solutions are either quite  difficult  or  impossible  to  achieve,  so  

approximations and  numerical  techniques  must  be  used. variational iteration method [4–11] are relatively 

new approach to provide an analytical approximation to linear and nonlinear problems,  and  they  are  

particularly  valuable  as  tools  for scientists  and  applied  mathematicians,  because  it  provides immediate and 

visible symbolic terms of analytic solutions, and numerical approximate solutions to both linear and nonlinear 

differential equations.  

In the present work, we apply the modified variational method for solving two-dimensional fractional dispersion 

equation and compare the results with exact solution.  

 

II. Idea of Modified Variational Iteration Method 
In this section, we will explain modified variational iteration method for solving partial differential 

equation. Consider the general nonlinear differential equation  

             ),,(),(),( txgtxNutxLu   

 

where L is a linear differential operator, N is a nonlinear operator, and g an inhomogeneous term. 

According to modified variational iteration method, we can construct a correct functional as follows: 
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and   is a Lagrange multiplier which can be identified optimally via the variational theory. The subscript n 

indicates the n th approximation and nu~  is considered as a restricted variation 0~ nu . 

 

III. Modified Variational Iteration Method For Solving Two-Dimensional Fractional  

Dispersion Equation 
 

We consider the two-dimensional fractional dispersion equation of the form:  
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on a finite rectangular domain HL xxx   and HL yyy  , with fractional orders 21  and 

21   , where the diffusion coefficients 0),( yxa  and .0),( yxb  The „forcing‟ function q(x, y, t) 

can be used to represent sources and sinks. We will assume that this fractional dispersion equation has a unique 

and sufficiently smooth solution under the following initial and boundary conditions. Assume the initial 
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condition ),()0,,( yxfyxu   for HL xxx   and HL yyy  , and Dirichlet boundary condition 

),,(),,( tyxStyxu  on the boundary (perimeter) of the rectangular region HL xxx   and 

HL yyy  , with the additional restriction that 0),,(),,(  tyxStyxS LL . Eq.(1) also uses Caputo 

fractional derivatives of order α and β, such that: 

The Caputo fractional derivative operator 
D of order   is defined in the following form [12,13]: 
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where .0,,1  xmmm   

 

Applying modified variational iteration method in (1):  

We will create new initial condition is:   
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IV. Numerical Application 
 For finding the analytical solution of fractional dispersion equation, we will apply modified variational iteration 

method:  
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with the coefficient function:  6x)2.2(),( 2.8 yyxa  , and ),6.4(2),( 6.2  yxyxb  

 

and the source function:  
3.63-t yx2xy)e-(1),,( tyxq , 

 

subject to the initial condition   u (x,y,0) = x3y3.6,          0  x  1,  

and Dirichlet boundary conditions :  u (x,0,t) = u(0,y,t)= 0, u(x,1, t) = e-tx3,  and  u(1,y,t)= e-ty3.6 ,  0t . Note 

that the exact solution to this problem is: u(x,y,t) = e-t x3 y3.6.  

Table 1 displays the analytical solutions for fractional dispersion equation obtained for different values 

and comparison between exact solution and analytical solution. Figure 1 show the plot of the numerical and the 

exact solution surface for fractional dispersion equation respectively 
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Table1.  Some of comparison between exact solution and analytical  

solution when 6.1,8.1    for fractional dispersion equation 

x = y t Exact Solution Modified Variational 

Iteration Method 

|uex-uMVIM| 

0 4 0 0 0.00000000000 

0.1 4 0.000000004601 0.000000004601 0.00000000000 

0.2 4 0.000000446300 0.000000446300 0.00000000000 

0.3 4 0.000064840000 0.000064840000 0.00000000000 

0.4 4 0.000043290000 0.000043290000 0.00000000000 

0.5 4 0.000188800000 0.000188800000 0.00000000000 

0.6 4 0.000629000000 0.000629000000 0.00000000000 

0.7 4 0.001740000000 0.001740000000 0.00000000000 

0.8 4 0.004200000000 0.004200000000 0.00000000000 

0.9 4 0.009137000000 0.009137000000 0.00000000000 

1 4 0.018000000000 0.018000000000 0.00000000000 

0 5 0.000000000000 0.000000000000 0.00000000000 

0.1 5 0.000000001692 0.000000001692 0.00000000000 

0.2 5 0.000000164200 0.000000164200 0.00000000000 

0.3 5 0.000002385000 0.000002385000 0.00000000000 

0.4 5 0.000015930000 0.000015930000 0.00000000000 

0.5 5 0.000006946000 0.000006946000 0.00000000000 

0.6 5 0.000231400000 0.000231400000 0.00000000000 

0.7 5 0.000640000000 0.000640000000 0.00000000000 

0.8 5 0.001545000000 0.001545000000 0.00000000000 

0.9 5 0.003361000000 0.003361000000 0.00000000000 

1 5 0.006738000000 0.006738000000 0.00000000000 

0 6 0.000000000000 0.000000000000 0.00000000000 

0.1 6 0.000000000623 0.000000000623 0.00000000000 

0.2 6 0.000000006040 0.000000006040 0.00000000000 

0.3 6 0.000000877500 0.000000877500 0.00000000000 

0.4 6 0.000005859000 0.000005859000 0.00000000000 

0.5 6 0.000025550000 0.000025550000 0.00000000000 

0.6 6 0.000085120000 0.000085120000 0.00000000000 

0.7 6 0.000235400000 0.000235400000 0.00000000000 

0.8 6 0.000568400000 0.000568400000 0.00000000000 

0.9 6 0.001237000000 0.001237000000 0.00000000000 

1 6 0.002479000000 0.002479000000 0.00000000000 

 

 
(a)                                                      (b) 

 
Fig. 1: (a) Numerical solution (b) Exact solution 

 

V. Conclusion 
Analytical solutions for fractional dispersion equation obtained for different values of a using modified 

variational iteration method has been described in addition to shown. It is clear that the modified variational 

iteration method is in high agreement with the exact solutions. 
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