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Abstract: The objective of this paper to generalize certain Tauberian results proved by Gehring [3] for
summability ( C, k; &) of sequences to functions. In [1] A. V. Boyd generalized the Tauberian theorem for «
convergence of Cesaro means of sequences. In this paper ,we obtain some Tauberian theorems for (C, a, )
convergence of Cesaro means of order k of functions and investigate some of its properties .
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I.  Introduction
The notation is similar that are in [3],with the following additional definitions: If k > —1 then A, B}
denote the n-th Cesaro sums of order k for the series X3¢ a, Xv_ob, Where b, = na,. A;', B;* denote the
a,, b,. Summability (C,—1;a) of Y a, will b(C,0;a) of X a,. Mishra and Srivastava [6] introduced the
Summability method (C,«, ) for functions by generalizing (C, ) summability method. In this paper, we
discuss some Tauberian theorems for (C,a, ) convergence of Cesaro means of order k of functions and
investigate some of its properties .

1. Definitions and Some Preliminaries

We would like to first introduce Summability method. Summability method is more general than that of
ordinary convergence. If we are given a sequence (s,), we can construct a generalized sequence
(a,), the arithmetic mean of (s,) by this sequence (s,). If (a,) is convergent in ordinary sense for all
n > 0, then we say that (s,,) is summable (C, 1) to the sum s. This (C, 1) is called Cesaro mean of first order.

FS1t +. . . . -
If s, >s = o, =W — s, ie if a sequence is convergent, it is summable by method of

arithmetic mean. Alsoaseries1 —14+14+ 14 ...... is not convergent , but is summable to the sum % . The

space of summable sequences is larger than space of convergent sequences. If g, —» s asn — oo, then we say
that sequence ( s,,) is summable by method of arithmetic mean.

For example : Consider the series Uy = Uy + Uy + o 1)
And let g, = W , It may happen that whereas (1) diverges , the quantities ( the arithmetic mean
of partial sum of series) converges to a definite limitasn — co. For example 1 =14+ 1+ 1+ - ...... diverges,
but in this case sp=1, s=1-1=0, s5,=1-141=1, s3=0cccvvrccvcnce.  (5,) =
(10,101 ........) . Since s, = 0
So+STt e +sn

On n+1

1400 1+=D ) 14+ (=1)? 4o n 1+(=1)" J(n+1)

= 2 2 2 —2 n

:(nTH)+%{1—1+1—--- ......... (n+ Dterms}/(n+1)
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_1 1+(=)" _1
=3 + Ty , If n is even then g, + 2t

% asn — oo and if n is odd then g, =§ . S0 in either

. 1 .
case lim,,_,,, 0, = 70 Sn & C but s, e S . Therefore space of summable sequences is larger than thar of space
of convergent sequences .

Let f(X) be any function which is Lebesgue-measurable, and that f : [0, +00) — R, and integrable in (0, X)

for any finite X and which is bounded in some right hand neighbourhood of origin. Integrals of the form J.

0
X

throughout to be taken as lim .X[ , J. being a Lebesgue integral.

X—®© 0

Let k > 0.If, for t > 0, the integral
k1L

g(t)=g™(t) = ktj e _fQdx (2.1)

exists and if g(t) —> S as t — o0, we say that function f(X) is summable (D,K) to the sum S and we
write f(X) > s(D,k)as X —> 0.

We note that, for any fixed t >0, Kk >0, it is necessary and sufficient for convergence of (2.1) that
1

The (C, a, [3) transform of f(X), which we denote by aaﬁ (X) is given by
f(x) (¢=0)

IFa+p+1) 1 ¢
T(@)T(B+1) x“7 ! (x

fx)

dX | should converge . (2.2)

-y f(ydy, (@>0,8>-1) (3

If this exists for x>0 and aa,ﬁ (X) tends to a limit Sas X —> 0, we say that f (X) is summable
C,a,p)to s, and we write f(X) »>s(C,a, p). We also write

Uy, () = ktj -0, (X)dx, @4

if this exists, and tends to a limit S as t — oo, we say that the function f(X) is summable (D,K)(C,«a, f)
to S.
when =0, (D,k)(C,a, ) and (D,k)(C,) denote the same method. Here we give some Gehrings

generalized Tauberian theorems.

Theorem 2.1: Suppose that 0 < @ < 1 and that f(x) is summable (4, @) to s, then f(x) is (C, a, B) convergent
to s if and only if the function {f(x), |9, 5 (x)} is (C, @, B) convergent to 0.

Theorem 2.2: Suppose that 0 < a < 1 and that f(x) is (C,a, ) convergent. If the function x d, 4 (x) is
(C, a, B) convergent to O,then f(x) is summable (C, k, @) to its sum for every k > —1.

I11.  Now we shall prove the following theorem
Theorem 3.1: Suppose that 0 < a <1 and that f(x) is summable (4,a) to s. Then for r > —1, f(x)is

summable (C,r, a) to s if and only if the function af(—x()x) is(C,a,B)1t00.
ap
Proof : Necessary Condition: If r = —1,the theorem immediate follows from the summability of (C,—1, a). If

r > —1, then by consistency theorem for (C, r, @) summability ( Gehring [3,theorem 4.2.1]) it follows that both
the functions f(x) and 9,4 (x) are (C,a,B) convergent to s. By Hardy [1, Equation (6.1.6)], S} = S7';; +
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1 fe
T+l g5 (x)’
sufficient conditions to prove the theorem are :

If r > —1, it may be shown as in Szasz [4 (1) ], that

L ) A=y =2 (1-4) o pdu (31)

y+1

Where d,,w) = f(w), (@ =0)

T(a+p+]) 1 t Nalup B
TG Xa+ﬁ£(x Yy f(y)dy, (@>0,8>-1) .

Case(@):a =0, r>—1 isobvious.
Case (b):0<a<1,r>-1,putting

1 © 1 \n
9 =550y dap A=  dy
We get from (3.1) that g(y) = (r + 1) f| 9,5 (wy) (1 = F@))" dv,
Where 9, 5 (1) now has bounded (C, a, §)- variation over (0, ). Let

N 1 a
V= [f |0a,3(yr)— aa,ﬁ(yr—1)|a]
1

and the result follows since a linear combination of functions summable (C, k, &) to itself. The

17
=+ D[N |y @ = F@){00p @) =} Bap(wy—1)e| . Then by theorem 201 of [5], we have
V<@+DM[[(1-f@) dv =M..
Where M =V, { Ogp(x):0<x< o}. Thus .5 (¥) has bounded (C, @, §)- variation over (0, ). It is readily
seen from Minkowski’s inequality that the sum of two (C,a,8) convergent sequences is also (C,a,f)
convergent and we therefore deduce that f(x) is (C, @, ) convergent to s.

Case (c ) r=-1,when a = 0,the result reduces to Tauber’s original theorem; when 0 < a < 1 it follows from
above theorem . For @ = 1, the result was proved by Hyslop [2] .

Theorem 3.2 : Let a > y>0, §>—1 , and suppose that a(x) is summable (C,y,£) to s and that

0y p (%)
N

L dx converges . Then a(x) is summable (D, k)(C,a,B) to s . We first prove this theorem under

unreasonable definition (2.2). However ,if the result holds with (2.2), then it must also hold under the definition

of (2.3). This follows from the following Lemmas.
Lemma 3.1: Let P=1y>1. Suppose that f(x)e L(0,x)for finite X>0.Suppose that f(X)e
|C, ¥, ,B| ) ,according to the definition (2.3).

Define

00 :{f(x) for x>T 2

0 for x<T

Let 3,5 (Y) denote the expression corresponding to 0,5 (Y) but with f (X) replaced by f (X) .

d p
—0, 4(y)| dy<oo, 3.3)

dy

-1
Then _[ y P
0

Thus f (X) is summable |C, 12 ,B| ) under the definition (2.3).
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Lemma 3.2: Let the hypothesis be

as in Lemma 3.land define f(X)as above. Let

k>0,8>-1and @ >0 .Then  |(D, k)(C,a,ﬂ)|p summability of {f(x)} and {f(x)} are

equivalent.

Proof of Lemma 3.1: We are given that , for some T>0,
e 0]

[

—0,5(X)
7 Jdx

p
dx < oo

(3.3)

But since, if (3.3) holds for given T, it holds for any greater T, it must hold for all sufficiently large T. Now by
standard properties of fractional integrals, and since » >1,we have

]
j (T —u)"2u”|f (u)] du<oo, (3.4)
0

Since (3.3) holds, this will

s

T

X{éy,ﬂ(x)—ay,ﬂ(x)}

Now , it follows at once from the definition that, for X >T,

follow from Minkowski’s
p
dx < oo

inequality if we prove that

(3.5)

8,.5(X) =8, ,(X) =

T+p+D) 1 T s CToepED) 1t o,
el AR A A ve rer e K UL

If y<2, then for X>T, we have (X=y)?°<(T-y)? so that

d _
‘ g {ay,ﬂ(x) —ay,ﬁ(x)}

Const.
N by (3.4).

Y

Proof of Lemma 3.2: We use notations as in Lemma 3.1, and write further U K., (Y) for the expression

corresponding to U ko (Y) butwith f (x) replaced by f (x).
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We know that for any fixed Y >0,k >0, #>—-1,a >0 convergence of

945X
a.p
U k.a,B (Y) J k+1 a B (X) dx , is equivalent to the convergence of I X2 dx
1

.Then the conclusion will follow from Minkowski’s inequality, if we show that

o0

[Y" o Vs =Ty (9) dy<oo @

1

where we take (3.6) as including the assertion that the integral defined by U, , ,(Y) —Uk’aﬁ(y)

converges for all y > 0. For large Y ,we have

0w (V) —B _T+B+Y) 1 fo veas
£(Y) =0, 4(Y) F(a)r(ﬁﬂ)ywﬁ!(y X)XPE (A (37)

k-1

X

X —

Hence the convergence of KY -[—(X y) Oup (X) {aa’ﬁ (X) - O p (X)}dX , follows at once by a
0

result due to ([2] ) . Now (3.6) is equivalent to

k-1 P

[e0) - o] X —_
!yp o C! W(X —ky){0, ,() -3, ,(x)jdx <oo 38)

Let T, be any sufficiently large constant. Then (3.8) will follow from Minkowski’s inequality, if we show

k-1 P

0 TO
. X ~
that _!yp 'dy C.([ (x+ y—)m (x—ky) {aa,ﬁ(x) - aa,ﬂ(x)}dx <0 @9

p

X —_
—————(x=ky) {aa,ﬂ(x) - aa,/ﬁ'(x)}dx <%0 310

00 ) k-1
! vy CT{ (X+Y)
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By (3.9), we have

p
k-1

Iyp_ldy CJQ(X;L(T(X —ky) {@a,ﬁ(x) —~ éa,ﬁ(x)}dx

=0() [y*"p*p]f =O(1). Hence (3.9) follows .
By (3.7), the expression on the left of (3.10) does not exceed a constant. Thus

p
k-1

Typ_ldy CT (XET(X —ky) 10, ()~ 3,5 (x) fdx

p

0

=o(D)[ y*dy || (x+y)*x " dx (3.11)
1

To

By an obvious change of variables the expression (3.11) is equal to

p

0(1)_[ y p_ldy J. t (t— y)_ﬂ_l dt = 0(1) C= C.The result follows.
1 y

Proof of Theorem 3.2 : We divide the proof into the following cases .

Case I. a>y Casell. a=y Caselll. a<y
Here we observe that Case | and Il follow from case 111, with the aid of Theorem 3.1 .

For, if & =y, Choose any 7/' > o, summability |C,}/,ﬂ|p implies summability ‘C, ;/' , ,B‘ by Theorem 3.1,
P

and it follows from Case I11, that this implies |(D, k)(C, «, ﬂ)|p . Hence it is sufficient to consider the case 111

only.

Proof of Case 111 : Since f (X) = s(C,a, B) implies that f(X) —>s(C,a,f)for & >a >0, thereisno

loss of generality in considering the Case ¥ =« +K, K is a positive integer.

d el Xk—l
We have ,d—yU k,a,ﬁ’(y) :C_}[W

0

(x=ky) 9, 4 (x)dx (3.12)
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Now, by definition

_ [(a+p+1) 1 bty s
Oa+p,p(X) = X—t)“7 P e (t)dt.
+p.5(X) T T ymmp!( ) 0!
Putting p=1and ¢ = y ,we see that aa+l,ﬁ(X) = (05%6:;1)]‘ t‘”f’aaﬁ (t)dt. (3.13)
X 0
T 0, ,(t
We also write R, ,(X) = I “"['32( ) dt.

o0

0, 5(X
It is clear that, whenever J. %dx converges, R, ,(X)is defined for X >0, and that R, ,(Xx) — 0 as
» , :
1

X —>00. It follows immediately from (3.13) that

Oas1,5(X) = _larfptl) j t7t?dR,, ,(t)dt
0

Xa+ﬂ+1

= 0(x")and hence that, for p>1, Oatl,p (X) = o(x') (3.14)

Integrating (3.14) by parts k times,we deduce with the help of (3.13) that

9y, =0 x50, , 000 S X ek a6
dy k.o, ) a+k,B ka (X+ y)k+2 . (3.15)
k—a—p-1
It is verified that expression in (3.16) is 0(—“1} (3.16)
(x+y)

X

J_ ik dk tkfafﬁfl
Let R(x,y) = [t=#* —{—+(t—ky)}dt.
. dx*| (t+y)<2

In fact, for fixed K >0, we have uniformly in X >0, y >0,

R(X, y) = O((X-FXT] . (3.17)

This may be proved by induction onk , if K =0 ,we have
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k—a—-p-1

RO Y) jtmﬁ{ t

t—Kky) |dt =
(t )k+2( y):|

(X+ y)k+1 !

hence the result is evident. Suppose that k >1, and assume the result true for k —1. Integrating by parts ,we

have

X tk—af/i’fl

R(X, y) — Xa+ﬂ+k d - inaiﬂil (X— ky) _(a +ﬁ+ k)J'ta+ﬁ+k+l ak&
dxk—l (X + y)k+2 . atk—l (t + y)k+2

the first term is of required order by (3.17) (with k replaced by k-1), and the second by induction hypothesis.

(t— ky)}dt.

Now integrating (3.16) by parts, we have

d

T d T d
d—yUk,a,ﬂ(y) = ! R(x,Y) (&%k,ﬁ(X)j dx = ! R(x,Y) (&%(X)J dx .

Since the integrated term tends to 0 as 0, ;(X)is bounded and R(X,y) =0 as X —oo.

Using (3.17) and putting X =1 Y, we see that the expression in curly brackets

kal C X t k-1 C

<Cf——rdx = = [——dt
£(><+y)k ' y!(l+t)k ' y

Again using (3.18) , the inner integral

ka—+ dy (3.18)
!(X+ y)“

on putting Y = Xt the expression on the right of (3.19) is equal to

o0

-! 1+t)k+l

(Since the integral converges) . Hence the result follows.
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