Counting subgroups of finite nonmetacyclic 2-groups having no elementary abelian subgroup of order 8

EniOluwafe, Michael

(Department of Mathematics/Faculty of Science/University of Ibadan, Nigeria)

Abstract: The aim of this note is to give an explicit formula for the number of subgroups of finite nonmetacyclic 2-groups having no elementary abelian subgroup of order 8.

Keywords: Central products, cyclic subgroups, dihedral groups, finite nonmetacyclic 2-groups, number of subgroups.

Introduction I.

Counting subgroups of finite groups solves one of the most important problems of combinatorial finite group theory. For example, in [1] are determined an explicit expression for the number of subgroups of finite nonabelianp-groups having a cyclic subgroup.

Recall that the problem was completely solved in the abelian case, by establishing an explicit expression of the number of subgroups of a finite abelian group [2]. Unfortunately, in the nonabeliannonmetacyclic casea such expression can be given only for certain finite groups [3]. In this note we prove a counting theorem for a class of finite nonmetacyclic 2-groups having no elementary abelian subgroup of order 8.

A group G is said to be metacyclic if it contains a normal cyclic subgroup C such that G/C is cyclic, otherwise it is said to be nonmetacyclic. Let A and B be groups, a central product of groups A and B is denoted by A * B, that is, A * B = AB with $[A, B] = \{1\}$, where [A, B] is a commutator subgroup generated by groups A and B.

For basic definitions and results on groups we refer the reader to [4], [5] and [6]. More precisely, we prove the following result in the next section.

Theorem 2.1. Let G = D * Z, where * is a central product, $D \cong D_{2^n}$, a dihedral group of order 2^n , $n \ge 1$ 3, $Z \cong C_4$, a cyclic group of order 4 and $D \cap Z = Z(D)$, Z(D) is the center of D. Then the number of subgroups of the group G is given by the following equality:

$$|L(G)| = \begin{cases} 23 & \text{; ifn} = 3 \\ 3\left(2 + n + \sum_{k=2}^{n-2} 2^{n-k}\right) + 2^n & \text{; ifn} \ge 4 \end{cases}$$

where L(G), the set consisting of all subgroups of G forms a complete lattice with respect to set inclusion, called the subgroup lattice of G.

 $\langle (x^{2^{n-2}}, a^2) \rangle$, $n \ge 3$. That is:

$$G := \langle (x, 1)H, (y, 1)H, (1, a)H \rangle$$

such that:

$$(x^{2^{n-1}}, 1)H = (y^2, 1)H = (1, a^4)H = H, (yxy^{-1}, 1)H = (x^{2^{n-1}-1}, 1)H$$

An important property of this group is that its characteristic subgroup defined by: $\mho_{n-2}(G) :=$ $\langle (x^q, 1)H \rangle$, where $q = 2^{n-2}$, for all $n \ge 3$, is of order 2. Also, for $n \ge 3$, we obtain an epimorphism $\delta: G \to A$ $D_{2^{n-1}} C_2$ defined by:

 $\delta(kH) := (kH) \langle (x^{2^{n-2}}, 1)H \rangle, n \ge 3, \text{ where } kH \in G, k \in D \times Zand(kH) \langle (x^{2^{n-2}}, 1)H \rangle \in D_{2^{n-1}} \times C_2, n \ge 3.$ Clearly, the kernel of δ is

 $\mho_{n-2}(G) \coloneqq \langle (x^{2^{n-2}},1)H \rangle$ and by the first isomorphism theorem for groups, we obtain that:

$$\frac{G}{U_{n-2}(G)} \cong D_{2^{n-1} \times} C_2 \text{ for all } n \ge 3$$
 (1)

Being isomorphic, the groups $\frac{G}{U_{n-2}(G)}$ and $D_{2^{n-1}\times}C_2$ have isomorphic lattices of subgroups.

Moreover, since the number of subgroups G which not contain $\mho_{n-2}(G)$ are the trivial subgroup as well as all minimal subgroups of G excepting $\mho_{n-2}(G)$ and since the distinct subgroups generated by the join of any two distinct such subgroups includes $\mho_{n-2}(G)$. One obtains:

$$|L(G)| = \left| L\left(\frac{G}{\mho_{n-2}(G)}\right) \right| + 2^{n-1} + 3, \text{ for all } n \ge 3$$
 (2)

Thus, we need to determine the number of subgroups of $D_{2^{n-1}\times}C_2$ using the following auxiliary result established in [3].

Lemma 2.2: For all $n \ge 3$, the number of all subgroups of order 2^n in the finite 2-group $D_{2^{n-1}\times}C_2$ is:

$$\begin{cases} 16 & ; ifn = 3 \\ 2^{n-1} + 3\left(n + 1 + \sum_{i=1}^{n-2} 2^{n-i}\right) & ; ifn \ge 4 \end{cases}$$
 (3)

Hence, the relations (1), (2) and (3) give the explicit expression of

$$|L(G)| = \begin{cases} 23 & \text{; ifn} = 3 \\ \\ 2^n + 3\left(2 + n + \sum_{k=2}^{n-2} 2^{n-k}\right) & \text{; ifn} \ge 4 \end{cases}$$

III. Conclusion

In this short note we had worked on minimal subgroups and used a previous result (Lemma 2.2) to obtain a counting theorem for a class of finite nonmetacyclic 2-groups having no elementary abelian subgroup of order 8. It is desirable to consider arbitrary nonabeliannonmetacyclic 2-groups.

References

- [1]. M. Tarnauceanu, Counting subgroups for a class of finite nonabelian p-groups. AnaleleUniversitaatii de Vest, TimisoaraSeriaMatematica Informatica XLVI, 1, (2008), 147-152.
- [2]. G. Bhowmik, Evaluation of the divisor function of matrices, Acta Arithmetica 74(1996), 155 159.
- [3]. M. EniOluwafe, Counting subgroups of nonmetacyclic groups of type $D_{2^{n-1}\times C_2}$, $n \ge 3$, submitted.
- [4]. B. Huppert, Endlichegruppen I, II (Springer-Verlag, Berlin, 1967).
- [5]. M. Suzuki, Group theory I, II (Springer-Verlag, Berlin, 1982, 1986).
- [6]. H. Zassenhaus, Theory of groups (Chelsea, New York, 1949)