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I. Introduction

In 1997, Alber and Guerre-Delabriere [11] introduced the notion of ¢@-weakly contraction. We
introduce the notion of ¢-weakly expansive mappings in metric space, In 1986, Jungck [2] introduced the notion
of compatible mappings, In 1994, Pant [4] introduced the notion of R-weak commuativity in metric spaces to
extend the scope of the study of common fixed point theorems from the class of weakly commuting mappings to
wider class of R-weakly commuting mappings. in 1997, Pathak et al. [3] improved the notion of R-weakly
commuting mappings to R-weakly commuting mappings of type (A¢) and of type (A,). In 1998 and 1999, Pant
[5], [6] introduced a new notion of continuity, known as reciprocal continuity, Recently, Pant et al. [7]
generalized the notion of reciprocal continuity to weak reciprocal continuity, In 2012, Manro and Kuman [9]
proved the following fixed point theorem in complete metric spaces: In 1922, Banach proved a common fixed
point theorem which ensures, under appropriate conditions, the existence and uniqueness of a fixed point. This
result of Banach is known as Banachs fixed point theorem or Banach contraction principle.

II.  Preliminaries
Definition: Let F be a self mapping of a metric space (X, d). Then F is said to be expansive if there exists a real
number h > 1 such that d(Fx, Fy) > hd(x, y) for all x, y € X.

Definition: Let F be a self mapping of a metric space (X, d). Then F is said to be ¢p-weakly contraction if there
exists a continuous mapping @ : [0, c0) — [0, o) with @(0) =0 and @ (t) <t for all t > 0 such that
d(Fx, Fy) < d (x,y) — 08(d(x,y)), for all x, y € X.

Definition: Let F be a self mapping of a metric space (X, d). Then F is said to be ¢-weakly expansive if there
exists a continuous mapping @ : [0, c0) — [0, ) with @(0) =0 and @ (t) >t for all t > 0 such that d(Fx, Fy) >
d(xy) + 0(d(x,y)), forall x, y € X.

Definition: Let F and G be two self mappings of a metric space (X, d). Then F is said to be ¢-weakly expansive
with respect to G : X — X if there exists a continuous mapping @ : [0, ) — [0, o) with @(0) =0 and @ (t) >t
for all t > 0 such that d(Fx,Fy) = d (Gx, Gy) + @(d(Gx, Gy)), for all x, y € X.

Definition: Let F and G be two self mappings of a metric space (X, d). Then F is said to be compatible if
d(FGx,, GFx,) = 0, whenever{x, } is a sequence in X such that lim, _,, Fx,, = lim,,_,,, Gx, = t for some t € X.
An immediate consequence is that if F and G are compatible and Fz = Gz, z is called a coincidence point of F
and G, then FGz = GFz.

Definition: Let F and G be two self mapping of a metric space (X, d). Then F and G are said to be R-weakly
commuting if there exists R > 0 such that d(FGx, GFx) < Rd(Fx, Gx) for all x € X.

Definition: Let F and G be two self mapping of a metric space (X, d). Then F and G are said to be
1. R-weakly commuting of type (Ag) if there exists R > 0 such that d(FFx, GFx) < Rd(Fx, Gx) for all x € X.
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1. R-weakly commuting of type (Ap) if there exists some R >0 such that d(FGx, GGx) < Rd(Fx, Gx)
for all x € X.

Definition: Let F and G be two self mapping of a metric space (X, d). Then F and G are said to be R-weakly
commuting of type (P) if there exists R > 0 such that d(FFx, GGx) < Rd(Fx, Gx) for all x € X.

Definition: Let F and G be two self mappings of a metric space (X, d). Then F and G are said to be reciprocally
continuous if lim,_., FGx, = Ft and lim,_, GFx, = Gt, whenever{x,} is a sequence in X such that
lim,_ Fx, =lim__, Gx, = t for some t € X.

If F and G are both continuous, then they are obviously continuous, but the converse need not be true.

Definition: Let F and G be two self mappings of a metric space (X, d). Then F and G are said to be weakly
reciprocally continuous if lim,_, FGx,, = Ftor lim,_,, GFx, = Gt, whenever{x, } is a sequence in X such that
lim,_, Fx, = lim,_, Gx, = t for some t €X.

If F and G are both reciprocally continuous, then they are obviously weakly reciprocally continuous, but the
converse need not be true.

I11. Main Result

Fixed Point Theorem For @ - Weakly Expansive Mapping
Theorem 3.1: Let M and D be two weakly reciprocally continuous self mappings of a complete metric space
(X, d) satisfying
1.D(X) c¢ M(X);
2. There exists a continuous mapping @ : [0, ) — [0, o) with @(0) =0 and @ (t) >t for all t > 0 such that

d(Mx,My) = N (Dx,Dy) + @(N (Dx,Dy))
Where,
N(Dx, Dy) = min{d(Dx, Dy), d(Mx, Dx), d(My, Dy), d(Mx, My) d(Mx, Dy)}
For all x,y € X.
If M and D are compatible, then M and D have a unique common fixed point in X.
Proof: Let x,, be any point in X. Since D(X) € M(X), there exists a sequence {x,} such that
Dx, = Mx, ;. Define a sequence {y, } in X by
Yn+1 =DXn = MXn+1 (31)
Case I : We assume that if y, = y,,, for some n €N, there is nothing to prove.
Case I : We assume thaty, # y, 4 for alln € N, we have
d(Yn' YI]—].) = d(MXn+1' Mxn)
z min{d(DXn+1' DXn)7d(MXn+1! DXn+1)sd(MXnJ DXn)sd(MXn+1J MXn)sd(MXn+1’ DXn)}+
(Z)[ min{d(DXn+1' DXn)sd(MXn+1J DXn+1)sd(MXnJ DXn)sd(MXn+1’ MXn)ad(MXn+1' DX(%);%
> min{ d(Yn 42, Yn+1) 441 Yn42)s AFnr Yn+1)s A0ns1,Yn)s Ans1, Yns) b
Pl min{ d(yn+2,Yn+1) »dFn+1,Yn+2)s AFno Yas1)s A¥ns1,Yn)» d¥ns1, Yns1)}]
z d(Yn+1! YH) + Q)(d(YH+1’ Yn ))
That is,

d(Yn' YH—l) = d(Yn-H' YH)

Hence the sequence {d(y,,1,yn)} 1s strictly decreasing and bounded below. Thus there exists r > 0 such that
lim, ., d(¥,41,Vn) = 1. Lettingn—ooin (3.2) we getr = r + @ (r), which is a contradiction. Hence we have
r = 0. Therefore

limn—m d(Yn+1' Yn) =0 (33)

Now we will show that {y, } is a Cauchy sequence.

Let {y,} is not a Cauchy sequence. So there exists an ¢ > 0 and the subsequence {ym (k)} and {yn (k)} of {y,} such
that minimal n(k) in the sense that n(k) > m(k) > k and d(Yp ), Ynxy)) > & Therefore d(Ym k) Ynao-1) = &
By the triangular inequality, we have

& < d(Ym @) Yn())

AdWm@) Ymo-1) T d@mao-1,Ynw-1) + d¥ngo-1,Ynao

AVm@)y Ymw-1) + dme-1Yma)) + dUmay Ynaw-1) + dWnao-1,Ynw)
d(Yim @0 Ymao-1) + &+ dFngo-1, V)

ININIA
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Letting k—o0 in the above inequality and using (3.3) we get,

limy_,.,, d(Ym(k)'Yn(k)) = limy_,, d(Ym(k)—l!Yn(k)—l) =& (3.4)
From (2), we have

d(Ym0-1- Yn-1) = dMxpm a0, MX, )
> min{ d(Dxy, ), DXp ) » AMX ), DX 1)) » dMXy 1), DXpiy) s dMX iy 1) MX 1)) > d(MXpy ), DXn 1)) §
+ @[ min{ d(DXp, 1), DXp 1)) » dMXy (1), DX 1)) » d(MXy 1y, DXpi)) > d(MXpy iy, M, 1)) 5
d(Mxp, 1), DXnaoy) }]

> min { d(Ym@+1 Yn)+1) > AVm @) Yno+1) » A¥n ) Yno+1) » AVma0r Yaao)) s AVmr Ynao+1)}
+@ [min { d(Vim10)+1 Yn0)+1) » A¥m ) Yno+1) » AV Yno+1) > AVm0r Yno) » AWm ) Yoo +1) ]

> AV a0 Yao) 9 [d(Vmaor Ynaw)]

Letting k—oo, and using (3.4) we get € = ¢ + @(¢), which is contradiction, since @(e) > €. Hence {y,} is a
Cauchy sequence in X. Since X is complete there exists a point z € X such that lim,_y, = z. Therefore by
(3.1) we have
li_r;?o Yn+t1 = li_r;?c Dxn = Tlll_tzlc Mxn+1 =z
Suppose that M and D are compatible mappings. Now, by weak reciprocal continuity of M and D, we obtain
lim,_,MDx, = Mz or lim,_,,DMx, = Dz.

Let lim,,_,,, MDx,, = Mz. Then the compatibility of M and D gives
limd(MDx,,DMx,) =0

n—-oo

Hence,

lim,_,DMx, = Mz
Now we claim that Mz = Dz. Let Mz # Dz. Fro (3.1), we get
lim,_, DMx, ., = lim,_, DDx, = Mz. Therefore from (2), we get

d(Mz,MDx,) = min{d(Dz,DDx,),d(Mz, Dz),d(MDx,,DDx,),d(Mz MDx,),d(Mz,DDx,)}
+@[min{d(Dz, DDx,),d(Mz,Dz),d(MDx,,DDx,),d(Mz, MDx,),d(Mz, DDx,)}]

Letting n—o0, we get

= min{d(Dz,Mz),d(Mz,Dz),d(Mz,Mz),d(Mz,Mz),d(Mz, Mz)} +
@[min{d(Dz,Mz),d(Mz,Dz),d(Mz,Mz),d(Mz,Mz),d(Mz, Mz)}]

> d(Mz,Dz) + @[d(Mz,Dz)]

>2d(Mz, Dz)

Which is a contradiction. Hence Mz = Dz. Again the compatibility of M and D implies that
commutativity at a coincidence point. Hence DMz = MDz = MMz = DDz.
Using (2), we obtain

d(Dz,DDz) = d(Mz,MDz)
= min{d(Dz, DDz),d(Mz,Dz),d(MDz,DDz),d(Mz,MDz),d(Mz, DDz)} +
@[min{d(Dz,DDz),d(Mz,Dz),d(MDz,DDz),d(Mz,MDz),d(Mz, DDz)}]

= min{d(Dz, DDz),d(Dz,Dz),d(DDz,DDz),d(Dz,DDz),d(Dz,DDz)} +
@[min {d(Dz,DDz),d(Dz,Dz),d(DDz,DDz),d(Dz, DDz),d(Dz, DDz)}]

> d(Dz,DDz) + @[d(Dz,DDz)]

Which implies that Dz = DDz. Also we get Dz = DDz = MDz and so Dz is a common fixed point of M and
D.

Next, suppose that lim,_,,, DMx, = Dz. Since D(X) < M(X) there exists u € X such that Dz = Mu and
therefore lim,,_.,, DMx, = Mu. The compatibility of M and D implies that lim,_, MDx, = Mu. Now, we
prove that Mu = Du. Let Mu # Du. By (3.1), we have

www.iosrjournals.org 56 | Page



Fixed Point Theorem For @ - Wekaly Expansive Mappings And R-Wekaly Commuting Mappings In

lim DMx, ., = lim DDx,, = Mu
n-—-oo

n-ow

From (2), we have

d(Mu, MDx,)) = min{d(Du, DDx,),d(Mu, Du),d(MDx,,DDx,),d(Mu, MDx,),d(Mu,DDx,)}
+@[min{d(Du, DDx,),d(Mu, Du), d(MDx,, DDx,),d(Mu, MDx,), d(Mu, DDx,)}]
Letting n—oo, we get

d(Mu, Mu) = min{d(Du, Mu),d(Mu, Du), d(Mu, Mu), d(Mu, Mu),d(Mu, Mu)} +
@[min {d(Du, Mw), d(Mu, Du), d(Mu, Mu), d(Mu, Mu), d(Mu, Mu)}]
> d(Mu, Du) + @[d(Mu, Du)]

> 2 d(Mu, Du)

Which is a contradiction. Hence Mu = Du. Again the compatibility of M and D implies that commutativity at a
coincidence point. Hence DMu = MDu = MMu = DDu. Finally Using (2), we obtain

d(Du,DDu) = d(Mu, MDu)

> min{d(Du, DDu), d(Mu, Du), d(MDu, DDu), d(Mu, MDu),d(Mu, DDu)} +
@[min {d(Du, DDu),d(Mu, Du), d(MDu, DDu), d(Mu, MDu), d(Mu, DDu)}]
> min{d(Du, DDu), d(Du, Du), d(DDu, DDu), d(Du, DDu), d(Du, DDu)} +
@[min {d(Du, DDu), d(Du, Du),d(DDu, DDu), d(Du, DDu), d(Du, DDu)}]

> d(Du,DDu) + @[d(Du, DDu)]

Which implies that Du = DDu. Also we get Du = DDu = MDu and so Du is a common fixed point of M
and D.

Uniqueness: Let v and w(v # w) be two common fixed point M and D. From (2), we have

d(v,w) = d(Mv, Mw)
> min{d(Dv, Dw), d(Mv, Dv),d(Mw, Dw), d(Mv, Mw), d(Mv, Dw)} +
@[min {d(Dv, Dw),d(Mv, Dv), d(Mw, Dw), d(Mv, Mw), d(Mv, Dw)}]

> min{d(v,w),d,v),dw,w),d(w,w),d(w,w)} + @[min {d(v,w),d(v,v),d(w,w),d(v,w),d(v,w)}]

>d(v,w) + 0(d(v,w))
Which implies that v = w. Hence M and D have a unique common fixed point.

Fixed Point Theorem For R-Weakly Commuting of Type (4,) and Type (4y)
Theorem 3.2: Let M and D be two weakly reciprocally continuous self mappings of a complete metric space
(X, d) satisfying
1. D(X) € M(X);
2. There exists a continuous mapping @ : [0, o) — [0, o0) with @(0) =0 and @ (t) > t for all
t> 0 such that
d(Mx,My) = N (Dx,Dy) + ®(N (Dx,Dy))
Where,
N(Dx,Dy) = min{d(Dx, Dy),d(Mx, Dx),d(My, Dy),d(Mx, My) d(Mx, Dy)}
For all x, y € X. If M and D are R-weakly commuting of type (4,) and type (As), then M and D have a unique
common fixed point in X.
Proof: From above theorem {y, } is a Cauchy sequence in X. Since X is complete there exists a point z € X such
that lim,,_,, ¥, = z. Therefore by (3.1) we have
limy,,, =limDx, = limMx,,, =z
n—w n—-aw n-—-ow
Now, suppose that M and D are R-weakly commuting of type (Af) . The weak reciprocal continuity of M and
D, implies that lim,_,MDx, = Mz or lim,_,, DMx, = Dz.
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Let lim,,_,,, MDx,, = Mz. Then the R-weakly commuting of type (Af) of M and D yields,
d(DDx,,MDx,) < Rd(Mx,, Dx,) and therefore lim,_,d(DDx,,Mz) <Rd(z,z) =0, that is
lim,_.,, DDx, = Mz.

n—o

Now we claim that Mz = Dz. Let Mz # Dz. From (2), we get

d(Mz,MDx,) > min{d(Dz, DDx,),d(Mz,Dz),d(MDx,,DDx,),d(Mz, MDx,),d(Mz,DDx, )}
+@[min{d(Dz,DDx,),d(Mz,Dz), d(MDx,,DDx,),d(Mz, MDx,),d(Mz, DDx,)}]

Letting n—o0, we get

> min{d(Dz,Mz),d(Mz,Dz),d(Mz,Mz),d(Mz,Mz),d(Mz, Mz)} +
@[min{d(Dz,Mz),d(Mz,Dz),d(Mz,Mz),d(Mz, Mz),d(Mz, Mz)}]

> d(Mz, Dz) + @[d(Mz, Dz)]

Which is a contradiction. Hence Mz = Dz.

Again by R-weakly commutativity of type (Af) d(DDz,MDz) < Rd(Dz,Mz) = Rd(z,z) = 0 thatis DDz =

MDz.

Therefore DMz = MDz = MMz = DDz. Using (2), we obtain

d(Dz,DDz) = d(Mz,MDz)
> min{d(Dz,DDz),d(Mz,Dz),d(MDz,DDz),d(Mz,MDz),d(Mz, DDz)} +
@[min{d(Dz,DDz),d(Mz,Dz),d(MDz,DDz),d(Mz,MDz),d(Mz, DDz)}]

> min{d(Dz,DDz),d(Dz,Dz),d(DDz,DDz),d(Dz,DDz),d(Dz,DDz)} +
@[min {d(Dz,DDz),d(Dz,Dz),d(DDz,DDz),d(Dz, DDz),d(Dz, DDz)}]
> d(Dz,DDz) + @[d(Dz,DDz)]

Which implies that Dz = DDz. Then we also get Dz = DDz = MDz and so Dz is a common fixed point of
M and D.Similarly, if lim,,_,,, DMx,, = Dz, we can easily prove.

Suppose that M and D are R-weakly commuting of type (4,) . Again, as done above, we can easily prove that
Mz is a common fixed point of M and D.

Uniqueness: From theorem 3.1, we can easily prove the uniqueness of the theorem. Hence M and D have a
unique common fixed point.

Fixed Point Theorem For R-Weakly Commuting of Type (P)
Theorem 3.3: Let M and D be two weakly reciprocally continuous self mappings of a complete metric space
(X, d) satisfying
1. D(X) € M(X);
2. There exists a continuous mapping @ : [0, «) — [0, o) with @(0) =0 and @ (t) >t for all t > 0 such that

d(Mx,My) = N (Dx,Dy) + ®(N (Dx,Dy))
Where,
N(Dx,Dy) = min{d(Dx, Dy),d(Mx, Dx),d(My, Dy),d(Mx, My) d(Mx, Dy)}
For all x,y € X.
If M and D are R-weakly commuting of type (P), then M and D have a unique common fixed point in X.
Proof: From above theorem {y, } is a Cauchy sequence in X. Since X is complete there exists a point z € X such
that lim,,_,, ¥, = z. Therefore by (3.1) we have
rlli_t';loyn+1 = ;I%Dxn = rlli_T;Zchxn+1 =z

Now, suppose that M and D are R-weakly commuting of type (P) . The weak reciprocal continuity of
M and D, implies that lim,_,MDx, = Mz or lim,_,DMx, = Dz. Let lim,_, MDx, = Mz. Then the R-
weakly commutativity of type (P) of M and D yields,
d(MMx,,DDx,) < Rd(Mx,,Dx,) and therefore lim,_.,d(MMx,,DDx,) <Rd(z,z) =0 That is
lim, .,(MMx,,DDx,) = 0. Using (3.1), we have MDx,,_; = MMx,, » Mz and DDx,, » Mz ann — .

Now we claim that Mz = Dz.Let Mz # Dz. From (2), we get
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d(Mz,MDx,) = min{d(Dz,DDx,),d(Mz, Dz),d(MDx,,DDx,),d(Mz MDx,),d(Mz,DDx,)}
+@[min{d(Dz,DDx,),d(Mz,Dz),d(MDx,,DDx,),d(Mz, MDx,),d(Mz, DDx,)}]

Letting n—o0, we get

> min{d(Dz,Mz),d(Mz,Dz),d(Mz,Mz),d(Mz,Mz),d(Mz, Mz)} +

@[min{d(Dz,Mz),d(Mz,Dz),d(Mz,Mz),d(Mz, Mz),d(Mz, Mz)}]

> d(Mz,Dz) + @[d(Mz, Dz)]

Which is a contradiction. Hence Mz = Dz. Again by using the R-weakly commutativity of type (P), we have

d(MMz,DDz) < Rd(Mz,Dz) = 0 thatis DDz= MMz.

Therefore DMz = MDz = MMz = DDz.

Using (2), we obtain

d(Dz,DDz) = d(Mz,MDz)
> min{d(Dz,DDz),d(Mz,Dz),d(MDz,DDz),d(Mz,MDz),d(Mz, DDz)} +
@[min{d(Dz,DDz),d(Mz,Dz),d(MDz,DDz),d(Mz,MDz),d(Mz, DDz)}|

> min{d(Dz,DDz),d(Dz,Dz),d(DDz,DDz),d(Dz,DDz),d(Dz,DDz)} +
@[min {d(Dz, DDz),d(Dz,Dz),d(DDz,DDz),d(Dz, DDz),d(Dz, DDz)}|

> d(Dz,DDz) + @[d(Dz,DDz)]

Which implies that Dz = DDz. Then we also get Dz = DDz = MDz and so Dz is a common fixed
point of M and D. Similarly, if lim,,_,,, DMx,, = Dz, we can easily prove.

Uniqueness: From theorem 3.1, we can easily prove the uniqueness of the theorem. Hence M and D have a
unique common fixed point.

Corollary: Let M be surjective self mappings of a complete metric space (X, d) satisfying
1. there exists a continuous mapping @ : [0, ) — [0, o) with @(0) =0and @ (t) >t for all t > 0 such that

d(Mx,My) = N (x,y) + @(N (x,y))
Where,
N(x,y) = min{d(x,y),d(Mx,x),d(My,y),d(Mx, My) d(Mx,y)} Forallx,y € X.
Then M have a unique fixed point in X.

Example : Let X = [0,1] be equipped with the Euclidean metric d(x,y) = |x — y| for all x,y € X. define M,D : X
— X by Mx = 8x and Dx = 2x. so DX =[0,2] € [0, 8] = MX.

Let {x, } be a sequence in X such that x,, = % for each n. Also ,let @ : [0, o0) — [0, ) be defined by @(t) = 2t for
all t € [0, ). Here, Mx,, =%= S, so lim,,_,, Mx, = 0.

Also lim,_,MDx, = limn_mMs =lim, 1n—6 =0=M(0), so we can say that M and D are weakly
reciprocally continuous. Also, d(Mx, My) = 8|x — y|, d(Dx, Dy) = 2|x — y| and

¢(d(Dx Dy)) = 4lx — y|
Clearly,
d( Mx, My )= 8|x — y|
>2x —yl+0Q2lx -y
>2|x =yl + 4lx —yl)
>6lx —yl.

Aym¢KMMﬁW%J=(D5M§)

= d(Mx,,Dx,) =d (E,E) -6

n n n
Clearly,
d(DDx,,MDx,) < Rd(Mx,, Dx,), where R >4,
Hence M and D are R-weakly commuting mappings of type (A¢). Also M and D are compatible. So all the
conditions of Theorem 3.1 and 3.2 are satisfied and 0 is the unique fixed point of M and D.
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IV.  Conclusion
In this paper, we have presented common fixed point theorems in metric spaces through concept of @ -

weakly expansive mappings and R — weakly commuting mappings.
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