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I. Introduction 
In 1997, Alber and Guerre-Delabriere [11] introduced the notion of φ-weakly contraction. We 

introduce the notion of φ-weakly expansive mappings in metric space, In 1986, Jungck [2] introduced the notion 

of compatible mappings, In 1994, Pant [4] introduced the notion of R-weak commuativity in metric spaces to 
extend the scope of the study of common fixed point theorems from the class of weakly commuting mappings to 

wider class of R-weakly commuting mappings. in 1997, Pathak et al. [3] improved the notion of R-weakly 

commuting mappings to R-weakly commuting mappings of type (Af) and of type (Ag). In 1998 and 1999, Pant 

[5], [6] introduced a new notion of continuity, known as reciprocal continuity, Recently, Pant et al. [7] 

generalized the notion of reciprocal continuity to weak reciprocal continuity, In 2012, Manro and Kuman [9] 

proved the following fixed point theorem in complete metric spaces: In 1922, Banach proved a common fixed 
point theorem which ensures, under appropriate conditions, the existence and uniqueness of a fixed point. This 

result of Banach is known as Banachs fixed point theorem or Banach contraction principle. 

 

II. Preliminaries 
Definition: Let F be a self mapping of a metric space (X, d). Then F is said to be expansive if there exists a real 

number h > 1 such that d(Fx, Fy) ≥ hd(x, y) for all x, y ∈ X.  

 

Definition: Let F be a self mapping of a metric space (X, d). Then F is said to be ϕ-weakly contraction if there 

exists a continuous mapping ∅ : [0, ∞) → [0, ∞) with ∅(0) = 0 and  ∅ (t) < t for all t > 0 such that 

d Fx, Fy  ≤  d  x, y −  ∅(d(x, y)), for all x, y ∈ X. 

 

Definition: Let F be a self mapping of a metric space (X, d). Then F is said to be ϕ-weakly expansive  if there  

exists a continuous mapping ∅ : [0, ∞) → [0, ∞) with ∅(0) = 0 and  ∅ (t) > t for all t > 0 such that d Fx, Fy  ≥
 d  x, y +  ∅(d(x, y)), for all x, y ∈ X. 

 

Definition: Let F and G be two self mappings of a metric space (X, d). Then F is said to be ϕ-weakly expansive 

with respect to G : X → X  if there exists a continuous mapping ∅ : [0, ∞) → [0, ∞) with ∅(0) = 0 and  ∅ (t) > t 

for all t > 0 such that d Fx, Fy  ≥  d  Gx, Gy +  ∅(d(Gx, Gy)), for all x, y ∈ X. 

 

Definition: Let F and G be two self mappings of a metric space (X, d). Then F is said to be compatible if 

d FGxn , GFxn = 0, whenever xn  is a sequence in X such that limn→∞ Fxn = limn→∞ Gxn = t for some t ∈ X. 

An immediate consequence is that if F and G are compatible and Fz = Gz, z is called a coincidence point of F 

and G, then FGz = GFz. 
 
Definition: Let F and G be two self mapping of a metric space (X, d). Then F and G are said to be R-weakly 

commuting if there exists R > 0 such that d(FGx, GFx) ≤ Rd(Fx, Gx) for all x ∈ X. 

 

Definition: Let F and G be two self mapping of a metric space (X, d). Then F and G are said to be  

1. R-weakly commuting of  type (AG ) if there exists R > 0 such that d(FFx, GFx) ≤ Rd(Fx, Gx) for all x ∈ X. 
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1. R-weakly  commuting  of   type  (AF) if  there  exists  some  R > 0 such  that  d(FGx, GGx)  ≤  Rd(Fx, Gx) 

for all x ϵ X. 

 

Definition: Let F and G be two self mapping of a metric space (X, d). Then F and G are said to  be R-weakly 

commuting of type (P) if there exists R > 0 such that d(FFx, GGx) ≤ Rd(Fx, Gx) for all x ∈ X. 

 

Definition: Let F and G be two self mappings of a metric space (X, d). Then F and G are said to be reciprocally 

continuous if  limn→∞ FGxn = Ft and  limn→∞ GFxn = Gt, whenever xn  is a sequence in X such that 

limn→∞ Fxn = limn→∞ Gxn = t for some t ∈ X. 

If F and G are both continuous, then they are obviously continuous, but the converse need not be true. 

 

Definition: Let F and G be two self mappings of a metric space (X, d). Then F and G are said to be weakly 

reciprocally continuous if  limn→∞ FGxn = Ft or  limn→∞ GFxn = Gt, whenever xn  is a sequence in X such that 

limn→∞ Fxn = limn→∞ Gxn = t for some t ∈X. 
If F and G are both reciprocally continuous, then they are obviously weakly reciprocally  continuous, but the 

converse need not be true. 

 

III. Main Result 
 

Fixed Point Theorem For ∅ - Weakly Expansive Mapping 

Theorem 3.1: Let M and D be two weakly reciprocally continuous self mappings of a complete metric space 

(X, d) satisfying 

1. D(X)  ⊂  M(X); 
2. There exists a continuous mapping ∅ : [0, ∞) → [0, ∞) with ∅(0) = 0 and  ∅ (t) > t for all t > 0 such that 

 

d(Mx, My)   ≥  N (Dx, Dy) +  ∅( N (Dx, Dy) ) 
Where, 

N(Dx, Dy)  =  min{d(Dx, Dy), d(Mx, Dx), d(My, Dy), d(Mx, My) d(Mx, Dy)} 
For all x, y ∈ X. 

If M and D are compatible, then M and D have a unique common fixed point in X. 

Proof: Let x0 be any point in X. Since D(X) ⊂ M(X), there exists a sequence  xn  such that 

 Dxn  =  Mxn+1. Define a sequence  yn  in X by 

yn+1 =Dxn = Mxn+1                                                                     (3.1) 

Case I : We assume that if yn  = yn+1 for some n ∈N, there is nothing to prove. 

Case I : We assume that yn  ≠ yn+1 for all n ∈ N, we have  

d(yn , yn−1) = d(Mxn+1 , Mxn) 

≥ min{d(Dxn+1 , Dxn),d(Mxn+1 , Dxn+1),d(Mxn , Dxn),d(Mxn+1 , Mxn ),d(Mxn+1 , Dxn)}+ 

∅[ min{d(Dxn+1 , Dxn),d(Mxn+1 , Dxn+1),d(Mxn , Dxn),d(Mxn+1 , Mxn),d(Mxn+1 , Dxn)}] 

                                                                                                                     (3.2) 

≥ min{ d(yn+2 , yn+1) ,d(yn+1 , yn+2), d(yn , yn+1), d(yn+1 , yn ), d(yn+1 , yn+1)}+ 

 ∅[ min{ d(yn+2 , yn+1) ,d(yn+1 , yn+2), d(yn , yn+1), d(yn+1 , yn), d(yn+1 , yn+1)}] 

≥ d(yn+1 , yn) + ∅(d(yn+1 , yn )) 

That is, 

 d(yn , yn−1) ≥ d(yn+1 , yn) 
 

Hence the sequence {d(yn+1 , yn)} is strictly decreasing and bounded below. Thus there exists r ≥ 0 such that 

limn→∞  d(yn+1 , yn) = r. Letting n→∞ in (3.2) we get r ≥  r +  ∅ (r), which is a contradiction. Hence we have 

r =  0. Therefore 

limn→∞  d(yn+1 , yn) = 0                                                         (3.3) 

 

Now we will show that {yn} is a Cauchy sequence. 

Let  yn  is not a Cauchy sequence. So there exists an ε > 0 and the subsequence  ym k   and  yn k   of {yn} such 

that minimal n(k) in the sense that n(k) > m(k) > k and d(ym(k), yn(k))  >  ε. Therefore d(ym(k), yn k −1)  ≥  ε. 

By the triangular inequality, we have 

ε < d(ym(k), yn(k))  

                        ≤  d(ym k , ym k −1) +  d(ym k −1 , yn k −1)  +  d(yn k −1 , yn k  

                        ≤  d(ym(k), ym k −1) +  d(ym k −1 , ym k )  +  d(ym(k), yn k −1) +  d(yn k −1 , yn k )   

                        ≤  d ym k , ym k −1 + ε + d(yn k −1 , yn k )  
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Letting k→∞ in the above inequality and using (3.3) we get, 

limk→∞  d(ym(k) , yn(k)) = limk→∞  d(ym(k)−1 , yn k −1) = ε                                                   (3.4) 

From (2),  we have  

 

d ym k −1 , yn k −1 = d(Mxm k , Mxn k )  

≥ min{ d(Dxm k , Dxn k ) , d(Mxm k , Dxm k ) , d(Mxn k , Dxn k ) , d(Mxm k , Mxn k ) , d(Mxm k , Dxn k ) } 

+ ∅[ min{ d(Dxm k , Dxn k ) , d(Mxm k , Dxm k ) , d(Mxn k , Dxn k ) , d(Mxm k , Mxn k ) , 

d(Mxm k , Dxn k ) }] 

 

≥ min { d(ym k +1 , yn k +1) , d(ym k , yn k +1) , d(yn k , yn k +1) , d(ym k , yn k ) , d(ym k , yn k +1)}  

+∅ [min { d(ym k +1 , yn k +1) , d(ym k , yn k +1) , d(yn k , yn k +1) , d(ym k , yn k ) , d(ym k , yn k +1)}] 

 

≥ d(ym k , yn k ) +∅ [d ym k , yn k  ] 

 

Letting k→∞,  and using (3.4) we get ε ≥ ε + ∅(ε), which is contradiction, since ∅(ε) > ε. Hence {yn} is a 

Cauchy sequence in X. Since X is complete there exists a point z ϵ X such that  limn→∞ yn = z. Therefore by 

(3.1) we have 

lim
n→∞

yn+1 = lim
n→∞

𝐷𝑥𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑀𝑥𝑛+1 = 𝑧 

Suppose that M and D are compatible mappings. Now, by weak reciprocal continuity of  M and D, we obtain   

𝑙𝑖𝑚𝑛→∞ 𝑀𝐷𝑥𝑛 = 𝑀𝑧  or  𝑙𝑖𝑚𝑛→∞ 𝐷𝑀𝑥𝑛 = 𝐷𝑧. 

 

Let 𝑙𝑖𝑚𝑛→∞ 𝑀𝐷𝑥𝑛 = 𝑀𝑧. Then the compatibility of M and D gives  

𝑙𝑖𝑚
𝑛→∞

𝑑(𝑀𝐷𝑥𝑛 , 𝐷𝑀𝑥𝑛) = 0 

Hence , 

 𝑙𝑖𝑚𝑛→∞ 𝐷𝑀𝑥𝑛 = 𝑀𝑧 

Now we claim that Mz = Dz. Let Mz ≠ Dz. Fro (3.1), we get  

𝑙𝑖𝑚𝑛→∞ 𝐷𝑀𝑥𝑛+1 = 𝑙𝑖𝑚𝑛→∞ 𝐷𝐷𝑥𝑛 = 𝑀𝑧. Therefore from (2), we get 

 

𝑑 𝑀𝑧,𝑀𝐷𝑥𝑛  ≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧,𝐷𝐷𝑥𝑛  , 𝑑 𝑀𝑧, 𝐷𝑧 , 𝑑 𝑀𝐷𝑥𝑛 , 𝐷𝐷𝑥𝑛 , 𝑑 𝑀𝑧,𝑀𝐷𝑥𝑛  , 𝑑 𝑀𝑧,𝐷𝐷𝑥𝑛    
+∅[𝑚𝑖𝑛 𝑑 𝐷𝑧,𝐷𝐷𝑥𝑛  , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝐷𝑥𝑛 ,𝐷𝐷𝑥𝑛 , 𝑑 𝑀𝑧,𝑀𝐷𝑥𝑛  , 𝑑 𝑀𝑧,𝐷𝐷𝑥𝑛   ] 

 

Letting  n→∞, we get 

 

≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧  ] 
≥  𝑑(𝑀𝑧, 𝐷𝑧) +  ∅[𝑑(𝑀𝑧, 𝐷𝑧)] 
> 2 𝑑(𝑀𝑧, 𝐷𝑧) 
 

Which is a contradiction. Hence 𝑀𝑧 =  𝐷𝑧. Again the compatibility of M and D implies that 

commutativity at a coincidence point. Hence 𝐷𝑀𝑧 =  𝑀𝐷𝑧 =  𝑀𝑀𝑧 =  𝐷𝐷𝑧. 
Using (2), we obtain 

 

𝑑(𝐷𝑧, 𝐷𝐷𝑧)  =  𝑑(𝑀𝑧,𝑀𝐷𝑧) 
≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝑀𝑧, 𝐷𝑧 , 𝑑 𝑀𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝐷𝑧 , 𝑑 𝑀𝑧, 𝐷𝐷𝑧  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝐷𝑧 , 𝑑 𝑀𝑧, 𝐷𝐷𝑧  ] 
 

≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝑧 , 𝑑 𝐷𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝐷𝑧  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧,𝐷𝑧 , 𝑑 𝐷𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧,𝐷𝐷𝑧  ] 
 

≥  𝑑(𝐷𝑧, 𝐷𝐷𝑧) +  ∅[𝑑(𝐷𝑧,𝐷𝐷𝑧)] 
 

Which implies that 𝐷𝑧 =  𝐷𝐷𝑧. Also we get 𝐷𝑧 =  𝐷𝐷𝑧 =  𝑀𝐷𝑧 and so Dz is a common fixed point of M and 

D. 

Next, suppose that 𝑙𝑖𝑚𝑛→∞ 𝐷𝑀𝑥𝑛 = 𝐷𝑧. Since 𝐷(𝑋)  ⊂  𝑀(𝑋) there exists u ∈ X such that 𝐷𝑧 =  𝑀𝑢 and 

therefore 𝑙𝑖𝑚𝑛→∞ 𝐷𝑀𝑥𝑛 = 𝑀𝑢. The compatibility of M and D implies that  𝑙𝑖𝑚𝑛→∞ 𝑀𝐷𝑥𝑛 = 𝑀𝑢. Now, we 

prove that Mu = Du. Let 𝑀𝑢 ≠  𝐷𝑢. By (3.1), we have  
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𝑙𝑖𝑚
𝑛→∞

𝐷𝑀𝑥𝑛+1 = 𝑙𝑖𝑚
𝑛→∞

𝐷𝐷𝑥𝑛 = 𝑀𝑢 

From (2), we have 

 

𝑑 𝑀𝑢,𝑀𝐷𝑥𝑛  ≥ 𝑚𝑖𝑛 𝑑 𝐷𝑢, 𝐷𝐷𝑥𝑛 , 𝑑 𝑀𝑢, 𝐷𝑢 , 𝑑 𝑀𝐷𝑥𝑛 , 𝐷𝐷𝑥𝑛  , 𝑑 𝑀𝑢,𝑀𝐷𝑥𝑛  ,𝑑 𝑀𝑢,𝐷𝐷𝑥𝑛    
+∅[𝑚𝑖𝑛 𝑑 𝐷𝑢,𝐷𝐷𝑥𝑛  , 𝑑 𝑀𝑢,𝐷𝑢 , 𝑑 𝑀𝐷𝑥𝑛 ,𝐷𝐷𝑥𝑛 , 𝑑 𝑀𝑢,𝑀𝐷𝑥𝑛  , 𝑑 𝑀𝑢, 𝐷𝐷𝑥𝑛  ] 

Letting  n→∞, we get 

 

𝑑 𝑀𝑢,𝑀𝑢  ≥ 𝑚𝑖𝑛 𝑑 𝐷𝑢,𝑀𝑢 , 𝑑 𝑀𝑢, 𝐷𝑢 , 𝑑 𝑀𝑢,𝑀𝑢 , 𝑑 𝑀𝑢,𝑀𝑢 , 𝑑 𝑀𝑢, 𝑀𝑢  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑢,𝑀𝑢 , 𝑑 𝑀𝑢, 𝐷𝑢 , 𝑑 𝑀𝑢,𝑀𝑢 , 𝑑 𝑀𝑢,𝑀𝑢 , 𝑑 𝑀𝑢,𝑀𝑢  ] 
≥  𝑑(𝑀𝑢, 𝐷𝑢) +  ∅[𝑑(𝑀𝑢,𝐷𝑢)] 
 

> 2 𝑑(𝑀𝑢, 𝐷𝑢) 

 

Which is a contradiction. Hence 𝑀𝑢 =  𝐷𝑢. Again the compatibility of M and D implies that commutativity at a 

coincidence point. Hence 𝐷𝑀𝑢 =  𝑀𝐷𝑢 =  𝑀𝑀𝑢 =  𝐷𝐷𝑢. Finally Using (2), we obtain 

 

𝑑(𝐷𝑢,𝐷𝐷𝑢)  =  𝑑(𝑀𝑢,𝑀𝐷𝑢) 
 

≥ 𝑚𝑖𝑛 𝑑 𝐷𝑢, 𝐷𝐷𝑢 , 𝑑 𝑀𝑢, 𝐷𝑢 , 𝑑 𝑀𝐷𝑢, 𝐷𝐷𝑢 , 𝑑 𝑀𝑢,𝑀𝐷𝑢 , 𝑑 𝑀𝑢, 𝐷𝐷𝑢  + 
∅[𝑚𝑖𝑛  𝑑 𝐷𝑢, 𝐷𝐷𝑢 , 𝑑 𝑀𝑢, 𝐷𝑢 , 𝑑 𝑀𝐷𝑢,𝐷𝐷𝑢 , 𝑑 𝑀𝑢,𝑀𝐷𝑢 , 𝑑 𝑀𝑢, 𝐷𝐷𝑢  ] 

≥ 𝑚𝑖𝑛 𝑑 𝐷𝑢, 𝐷𝐷𝑢 , 𝑑 𝐷𝑢,𝐷𝑢 , 𝑑 𝐷𝐷𝑢, 𝐷𝐷𝑢 , 𝑑 𝐷𝑢,𝐷𝐷𝑢 , 𝑑 𝐷𝑢, 𝐷𝐷𝑢  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑢,𝐷𝐷𝑢 , 𝑑 𝐷𝑢, 𝐷𝑢 , 𝑑 𝐷𝐷𝑢,𝐷𝐷𝑢 , 𝑑 𝐷𝑢, 𝐷𝐷𝑢 , 𝑑 𝐷𝑢,𝐷𝐷𝑢  ] 
 

≥  𝑑(𝐷𝑢,𝐷𝐷𝑢) +  ∅[𝑑(𝐷𝑢, 𝐷𝐷𝑢)] 
 

Which implies that 𝐷𝑢 =  𝐷𝐷𝑢. Also we get 𝐷𝑢 =  𝐷𝐷𝑢 =  𝑀𝐷𝑢 and so Du is a common fixed point of M 

and D. 

 

Uniqueness: Let v and w(v ≠ w) be two common fixed point M and D. From (2), we have 

 

𝑑(𝑣,𝑤)  =  𝑑(𝑀𝑣, 𝑀𝑤) 
≥ 𝑚𝑖𝑛 𝑑 𝐷𝑣, 𝐷𝑤 , 𝑑 𝑀𝑣, 𝐷𝑣 , 𝑑 𝑀𝑤,𝐷𝑤 , 𝑑 𝑀𝑣,𝑀𝑤 , 𝑑 𝑀𝑣,𝐷𝑤  + 

∅[𝑚𝑖𝑛 {𝑑(𝐷𝑣,𝐷𝑤), 𝑑(𝑀𝑣,𝐷𝑣), 𝑑(𝑀𝑤,𝐷𝑤), 𝑑(𝑀𝑣,𝑀𝑤), 𝑑(𝑀𝑣, 𝐷𝑤)}] 
 

≥ 𝑚𝑖𝑛 𝑑 𝑣, 𝑤 , 𝑑 𝑣, 𝑣 , 𝑑 𝑤, 𝑤 , 𝑑 𝑣, 𝑤 , 𝑑 𝑣, 𝑤  + ∅[𝑚𝑖𝑛 {𝑑(𝑣, 𝑤), 𝑑(𝑣, 𝑣), 𝑑(𝑤,𝑤), 𝑑(𝑣,𝑤), 𝑑(𝑣,𝑤)}]  
 

≥ 𝑑(𝑣, 𝑤) + ∅(𝑑 𝑣,𝑤 ) 

Which implies that 𝑣 =  𝑤. Hence  M and D have a unique common fixed point. 

 

Fixed Point Theorem For R-Weakly Commuting of Type (𝑨𝒈) and Type (𝑨𝒇) 

Theorem 3.2: Let M and D be two weakly reciprocally continuous self mappings of a complete metric space 

(X, d) satisfying 

1. D(X) ⊂ M(X); 

2. There exists a continuous mapping ∅ : [0, ∞) → [0, ∞) with ∅(0) = 0 and  ∅ (t) > t for all  

t > 0 such that 

𝑑(𝑀𝑥,𝑀𝑦)   ≥  𝑁 (𝐷𝑥, 𝐷𝑦) +  ∅( 𝑁 (𝐷𝑥,𝐷𝑦) ) 
Where, 

𝑁(𝐷𝑥, 𝐷𝑦)  =  𝑚𝑖𝑛{𝑑(𝐷𝑥, 𝐷𝑦), 𝑑(𝑀𝑥, 𝐷𝑥), 𝑑(𝑀𝑦,𝐷𝑦), 𝑑(𝑀𝑥,𝑀𝑦) 𝑑(𝑀𝑥,𝐷𝑦)} 
For all x, y ∈ X. If M and D are R-weakly commuting of type (𝐴𝑔) and type (𝐴𝑓), then M and D have a unique 

common fixed point in X.  

Proof: From above theorem {𝑦𝑛 } is a Cauchy sequence in X. Since X is complete there exists a point z ∈ X such 

that 𝑙𝑖𝑚𝑛→∞ 𝑦𝑛 = 𝑧. Therefore by (3.1) we have 

𝑙𝑖𝑚
𝑛→∞

𝑦𝑛+1 = 𝑙𝑖𝑚
𝑛→∞

𝐷𝑥𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑀𝑥𝑛+1 = 𝑧 

 

Now, suppose that M and D are R-weakly commuting of type (𝐴𝑓) . The weak reciprocal continuity of  M and 

D, implies that  𝑙𝑖𝑚𝑛→∞ 𝑀𝐷𝑥𝑛 = 𝑀𝑧  or  𝑙𝑖𝑚𝑛→∞ 𝐷𝑀𝑥𝑛 = 𝐷𝑧. 
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Let 𝑙𝑖𝑚𝑛→∞ 𝑀𝐷𝑥𝑛 = 𝑀𝑧. Then the R-weakly commuting of type  𝐴𝑓  of M and D yields, 

 𝑑(𝐷𝐷𝑥𝑛 ,𝑀𝐷𝑥𝑛 ) ≤ 𝑅𝑑(𝑀𝑥𝑛 ,𝐷𝑥𝑛 )  and therefore 𝑙𝑖𝑚𝑛→∞ 𝑑(𝐷𝐷𝑥𝑛 ,𝑀𝑧) ≤ 𝑅𝑑(𝑧, 𝑧) = 0, that is  

𝑙𝑖𝑚𝑛→∞ 𝐷𝐷𝑥𝑛 = 𝑀𝑧. 

 

Now we claim that Mz = Dz. Let Mz ≠ Dz. From (2), we get 

 

𝑑 𝑀𝑧,𝑀𝐷𝑥𝑛  ≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧,𝐷𝐷𝑥𝑛  , 𝑑 𝑀𝑧, 𝐷𝑧 , 𝑑 𝑀𝐷𝑥𝑛 , 𝐷𝐷𝑥𝑛 , 𝑑 𝑀𝑧,𝑀𝐷𝑥𝑛  , 𝑑 𝑀𝑧,𝐷𝐷𝑥𝑛    
+∅[𝑚𝑖𝑛 𝑑 𝐷𝑧,𝐷𝐷𝑥𝑛  , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝐷𝑥𝑛 ,𝐷𝐷𝑥𝑛 , 𝑑 𝑀𝑧,𝑀𝐷𝑥𝑛  , 𝑑 𝑀𝑧,𝐷𝐷𝑥𝑛   ] 

 
Letting  n→∞, we get 

 

 ≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧, 𝑀𝑧  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧  ] 
≥  𝑑(𝑀𝑧, 𝐷𝑧) +  ∅[𝑑(𝑀𝑧, 𝐷𝑧)] 
Which is a contradiction. Hence 𝑀𝑧 =  𝐷𝑧.  

Again by R-weakly commutativity of type  𝐴𝑓  𝑑 𝐷𝐷𝑧,𝑀𝐷𝑧 ≤ 𝑅𝑑 𝐷𝑧,𝑀𝑧 = 𝑅𝑑 𝑧, 𝑧 = 0  that is 𝐷𝐷𝑧 =

 𝑀𝐷𝑧.  

Therefore 𝐷𝑀𝑧 =  𝑀𝐷𝑧 =  𝑀𝑀𝑧 =  𝐷𝐷𝑧. Using (2), we obtain 

 

𝑑(𝐷𝑧, 𝐷𝐷𝑧)  =  𝑑(𝑀𝑧,𝑀𝐷𝑧) 
≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝑀𝑧, 𝐷𝑧 , 𝑑 𝑀𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝐷𝑧 , 𝑑 𝑀𝑧, 𝐷𝐷𝑧  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝐷𝑧 , 𝑑 𝑀𝑧, 𝐷𝐷𝑧  ] 
 

≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝑧 , 𝑑 𝐷𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝐷𝑧  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧,𝐷𝑧 , 𝑑 𝐷𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧,𝐷𝐷𝑧  ] 
≥  𝑑(𝐷𝑧, 𝐷𝐷𝑧) +  ∅[𝑑(𝐷𝑧,𝐷𝐷𝑧)] 
 

Which implies that 𝐷𝑧 =  𝐷𝐷𝑧. Then we also get 𝐷𝑧 =  𝐷𝐷𝑧 =  𝑀𝐷𝑧 and so Dz is a common fixed point of 

M and D.Similarly, if 𝑙𝑖𝑚𝑛→∞ 𝐷𝑀𝑥𝑛 = 𝐷𝑧, we can easily prove. 

Suppose  that M and D are R-weakly commuting of type (𝐴𝑔) . Again, as done above, we can easily prove that 

Mz is a common fixed point of M and D. 

 

Uniqueness: From theorem 3.1, we can easily prove the uniqueness of the theorem. Hence M and D have a 

unique common fixed point. 

 

Fixed Point Theorem For R-Weakly Commuting of Type (P) 

Theorem 3.3: Let M and D be two weakly reciprocally continuous self mappings of a complete metric space 

(X, d) satisfying 

1. D(X) ⊂ M(X); 

2. There exists a continuous mapping ∅ : [0, ∞) → [0, ∞) with ∅(0) = 0 and  ∅ (t) > t for all t > 0 such that 
 

𝑑(𝑀𝑥,𝑀𝑦)   ≥  𝑁 (𝐷𝑥, 𝐷𝑦) +  ∅( 𝑁 (𝐷𝑥,𝐷𝑦) ) 
Where, 

𝑁(𝐷𝑥, 𝐷𝑦)  =  𝑚𝑖𝑛{𝑑(𝐷𝑥, 𝐷𝑦), 𝑑(𝑀𝑥, 𝐷𝑥), 𝑑(𝑀𝑦,𝐷𝑦), 𝑑(𝑀𝑥,𝑀𝑦) 𝑑(𝑀𝑥,𝐷𝑦)} 
For all x, y ∈ X. 

If M and D are R-weakly commuting of type (P), then M and D have a unique common fixed point in X.  

Proof: From above theorem {𝑦𝑛 } is a Cauchy sequence in X. Since X is complete there exists a point z ∈ X such 

that 𝑙𝑖𝑚𝑛→∞ 𝑦𝑛 = 𝑧. Therefore by (3.1) we have 

𝑙𝑖𝑚
𝑛→∞

𝑦𝑛+1 = 𝑙𝑖𝑚
𝑛→∞

𝐷𝑥𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑀𝑥𝑛+1 = 𝑧 

 

Now, suppose that M and D are R-weakly commuting of type (P) . The weak reciprocal continuity of  

M and D, implies that  𝑙𝑖𝑚𝑛→∞ 𝑀𝐷𝑥𝑛 = 𝑀𝑧  or  𝑙𝑖𝑚𝑛→∞ 𝐷𝑀𝑥𝑛 = 𝐷𝑧. Let  𝑙𝑖𝑚𝑛→∞ 𝑀𝐷𝑥𝑛 = 𝑀𝑧. Then the R-

weakly commutativity of type (P) of M and D yields, 

 𝑑(𝑀𝑀𝑥𝑛 , 𝐷𝐷𝑥𝑛) ≤ 𝑅𝑑(𝑀𝑥𝑛 ,𝐷𝑥𝑛 )  and therefore 𝑙𝑖𝑚𝑛→∞ 𝑑(𝑀𝑀𝑥𝑛 , 𝐷𝐷𝑥𝑛 ) ≤ 𝑅𝑑(𝑧, 𝑧) = 0 That is  

𝑙𝑖𝑚𝑛→∞ 𝑀𝑀𝑥𝑛 ,𝐷𝐷𝑥𝑛  = 0. Using (3.1), we have 𝑀𝐷𝑥𝑛−1 = 𝑀𝑀𝑥𝑛 → 𝑀𝑧 and 𝐷𝐷𝑥𝑛 → 𝑀𝑧 𝑎𝑛 𝑛 → ∞.   
 

Now we claim that 𝑀𝑧 =  𝐷𝑧. 𝐿𝑒𝑡 𝑀𝑧 ≠  𝐷𝑧.  From (2), we get 
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𝑑 𝑀𝑧,𝑀𝐷𝑥𝑛  ≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧,𝐷𝐷𝑥𝑛  , 𝑑 𝑀𝑧, 𝐷𝑧 , 𝑑 𝑀𝐷𝑥𝑛 , 𝐷𝐷𝑥𝑛 , 𝑑 𝑀𝑧,𝑀𝐷𝑥𝑛  , 𝑑 𝑀𝑧,𝐷𝐷𝑥𝑛    
+∅[𝑚𝑖𝑛 𝑑 𝐷𝑧,𝐷𝐷𝑥𝑛  , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝐷𝑥𝑛 ,𝐷𝐷𝑥𝑛 , 𝑑 𝑀𝑧,𝑀𝐷𝑥𝑛  , 𝑑 𝑀𝑧,𝐷𝐷𝑥𝑛   ] 

Letting  n→∞, we get 

 ≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧, 𝑀𝑧  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧 , 𝑑 𝑀𝑧,𝑀𝑧  ] 
≥  𝑑(𝑀𝑧, 𝐷𝑧) +  ∅[𝑑(𝑀𝑧, 𝐷𝑧)] 
Which is a contradiction. Hence 𝑀𝑧 =  𝐷𝑧. Again by using the R-weakly commutativity of type (P), we have 

𝑑 𝑀𝑀𝑧,𝐷𝐷𝑧 ≤ 𝑅𝑑 𝑀𝑧,𝐷𝑧 = 0  that is DDz = MMz.  

Therefore 𝐷𝑀𝑧 =  𝑀𝐷𝑧 =  𝑀𝑀𝑧 =  𝐷𝐷𝑧. 
Using (2), we obtain 

 

𝑑(𝐷𝑧, 𝐷𝐷𝑧)  =  𝑑(𝑀𝑧,𝑀𝐷𝑧) 
≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝑀𝑧, 𝐷𝑧 , 𝑑 𝑀𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝐷𝑧 , 𝑑 𝑀𝑧, 𝐷𝐷𝑧  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝑀𝑧,𝐷𝑧 , 𝑑 𝑀𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝑀𝑧,𝑀𝐷𝑧 , 𝑑 𝑀𝑧, 𝐷𝐷𝑧  ] 
 

≥ 𝑚𝑖𝑛 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝑧 , 𝑑 𝐷𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝐷𝑧  + 

∅[𝑚𝑖𝑛  𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧,𝐷𝑧 , 𝑑 𝐷𝐷𝑧,𝐷𝐷𝑧 , 𝑑 𝐷𝑧, 𝐷𝐷𝑧 , 𝑑 𝐷𝑧,𝐷𝐷𝑧  ] 
 

≥  𝑑(𝐷𝑧, 𝐷𝐷𝑧) +  ∅[𝑑(𝐷𝑧,𝐷𝐷𝑧)] 
 

Which implies that 𝐷𝑧 =  𝐷𝐷𝑧. Then we also get 𝐷𝑧 =  𝐷𝐷𝑧 =  𝑀𝐷𝑧 and so Dz is a common  fixed 

point of M and D. Similarly, if 𝑙𝑖𝑚𝑛→∞ 𝐷𝑀𝑥𝑛 = 𝐷𝑧, we can easily prove. 

 

Uniqueness: From theorem 3.1, we can easily prove the uniqueness of the theorem. Hence M and D have a 

unique common fixed point. 

 

Corollary: Let M be surjective self mappings of a complete metric space (X, d) satisfying 

1. there exists a continuous mapping ∅ : [0, ∞) → [0, ∞) with ∅(0) = 0 and  ∅ (t) > t for all t > 0 such that 

 

𝑑(𝑀𝑥,𝑀𝑦)   ≥  𝑁 (𝑥, 𝑦)  +  ∅( 𝑁 (𝑥, 𝑦) ) 
Where, 

𝑁(𝑥, 𝑦)  =  𝑚𝑖𝑛{𝑑(𝑥, 𝑦), 𝑑(𝑀𝑥, 𝑥), 𝑑(𝑀𝑦, 𝑦), 𝑑(𝑀𝑥,𝑀𝑦) 𝑑(𝑀𝑥, 𝑦)}  For all x, y ∈ X. 
Then M have a unique fixed point in X. 

 

Example : Let X = [0,1] be equipped with the Euclidean metric d(x,y) =  𝑥 − 𝑦  for all x,y ∈ X. define M,D : X 

→ X by Mx = 8x and Dx = 2x. so DX = [0,2] ⊂ [0, 8] = MX. 

Let  𝑥𝑛   be a sequence in X such that 𝑥𝑛 =
1

𝑛
 for each n. Also ,let ∅ : [0, ∞) → [0, ∞) be defined by ∅(t) = 2t for 

all t ∈ [0, ∞). Here, M𝑥𝑛  = 
1

𝑛
 = 

8

𝑛
, so 𝑙𝑖𝑚𝑛→∞ 𝑀𝑥𝑛 = 0. 

Also 𝑙𝑖𝑚𝑛→∞ 𝑀𝐷𝑥𝑛 = 𝑙𝑖𝑚𝑛→∞𝑀
2

𝑛
= 𝑙𝑖𝑚𝑛→∞

16

𝑛
= 0 = 𝑀(0), so we can say that M and D are weakly 

reciprocally continuous. Also, d(Mx, My) = 8 𝑥 − 𝑦 , d(Dx, Dy) = 2 𝑥 − 𝑦  and 

 

∅ 𝑑 𝐷𝑥 𝐷𝑦  = 4 𝑥 − 𝑦  
Clearly, 

d( Mx, My )= 8 𝑥 − 𝑦  
                    ≥ 2 𝑥 − 𝑦 + ∅(2 𝑥 − 𝑦 ) 

                    ≥ 2 𝑥 − 𝑦 + 4 𝑥 − 𝑦 ) 

                    ≥ 6 𝑥 − 𝑦 . 

Again,  𝑑 𝐷𝐷𝑥𝑛𝐹𝐷𝑥𝑛 =  𝐷
2

𝑛
,𝑀

2

𝑛
  

                                      = 𝑑  
4

𝑛
,

16

n
 =  

8

n
 

= d Mxn , Dxn = d  
8

n
,

2

n
 =

6

n
 

Clearly, 

d DDxn , MDxn < 𝑅𝑑 Mxn , Dxn ,  where R > 4. 

Hence M and D are R-weakly commuting mappings of type (Af). Also M and D are compatible. So all the 

conditions of Theorem 3.1 and 3.2 are satisfied and 0 is the unique fixed point of M and D. 
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IV. Conclusion 
In this paper, we have presented common fixed point theorems in metric spaces through concept of  ∅ - 

weakly expansive mappings and R – weakly commuting mappings. 
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