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Real-Time Oil Spill Detection Using Deep Learning: 

Economic and Environmental Implications for Maritime 

Infrastructure 
 
 

Abstract 
Maritime oil spills impose substantial economic externalities and environmental costs, particularly in strategic 

waterways with concentrated petroleum infrastructure. This study examines the application of modern deep 

learning architectures to automated oil spill detection, with specific emphasis on deployment feasibility in 

resource-constrained operational environments. We conduct a comparative benchmark analysis of YOLOv8 

instance segmentation against classical U-Net semantic segmentation using publicly available annotated aerial 

imagery. Our empirical results demonstrate that lightweight YOLOv8 architectures achieve superior performance 

on minority-class detection (Intersection over Union: 0.71 vs. 0.0006 for oil segmentation) while maintaining 

computational efficiency suitable for edge deployment. Through systematic threshold optimisation, we establish 

dual operating modes that balance detection sensitivity against false-positive suppression, addressing the 

operational cost trade-offs inherent in continuous monitoring systems. These findings contribute to the growing 

literature on AI-enabled environmental monitoring and provide empirical support for policy initiatives targeting 

sustainable maritime operations. 
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I. Introduction 
1.1 Economic Context and Problem Scope 

Oil spills represent a category of environmental disaster with substantial negative externalities affecting 

multiple economic sectors simultaneously. The maritime petroleum industry, while generating significant 

economic rents, creates attendant risks of catastrophic spills that impose costs on fisheries, tourism, desalination 

infrastructure, and ecosystem services. These risks are particularly concentrated in strategic maritime corridors 

characterized by high vessel density and proximity to critical infrastructure. 

The Arabian Gulf exemplifies this concentration of risk and value. Containing approximately 65% of 

proven global petroleum reserves, the region processes over 25,000 tanker transits annually through the Strait of 

Hormuz alone. The United Arab Emirates (UAE), positioned at the nexus of offshore extraction and international 

shipping lanes, faces acute exposure to spill risks. Historical incidents demonstrate the magnitude of potential 

damages: the 2001 Jebel Ali spill affected multiple coastal zones, including high-value tourism areas (Mamzar, 

Jumeirah), while 1994 records document 15 tanker collisions along UAE shores within a single calendar year. 

 

1.2 Economic Costs of Detection Delays 

The economic impact of oil spills follows a non-linear damage function: early detection and rapid 

response can reduce total damages by orders of magnitude relative to delayed intervention. Traditional monitoring 

methodologies: visual inspection, chemical sampling, and patrol-based surveillance, impose high labour costs 

while providing limited spatial and temporal coverage. Synthetic Aperture Radar (SAR) and optical satellite 

monitoring extend coverage but introduce two critical inefficiencies: (1) data volume exceeds manual processing 

capacity, creating analytical bottlenecks; and (2) high false-positive rates generate unnecessary mobilisation costs 

for response teams. 

For the UAE specifically, spill risks interact with critical desalination infrastructure dependencies. 

Approximately 42% of the nation's potable water derives from coastal desalination plants, creating a direct channel 

through which maritime pollution threatens water security, a strategic economic vulnerability with potentially 

severe welfare implications. 

 

1.3 Research Contribution 

This study addresses the detection bottleneck through application of convolutional neural networks (CNNs) to 

automated spill segmentation. We make three primary contributions to the literature: 
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Methodological: We provide the first direct comparison of real-time instance segmentation (YOLOv8) against 

semantic segmentation baselines (U-Net) for maritime oil detection, using identical data partitions and 

preprocessing protocols to ensure internal validity. 

Operational: We develop and validate a threshold-based operating point selection methodology that allows 

practitioners to explicitly trade off detection completeness against false-positive suppression, matching system 

behaviour to deployment context (incident investigation vs. continuous monitoring). 

Economic: We demonstrate that lightweight architectures can achieve near-state-of-the-art detection performance 

at dramatically reduced computational cost (10× fewer parameters, 5× faster inference), making edge deployment 

economically feasible and reducing the total cost of ownership for monitoring systems. 

Our results indicate that with appropriate architecture selection and threshold tuning, automated detection systems 

can achieve operational utility for both retrospective analysis and prospective alerting, supporting cost-effective 

pollution monitoring aligned with environmental policy objectives such as the UAE's Net Zero 2050 initiative. 

 

II. Literature Review 
2.1 Economics of Environmental Monitoring 

The environmental economics literature establishes that optimal monitoring intensity balances the 

marginal benefit of damage reduction against the marginal cost of surveillance. Traditional enforcement models 

assume discrete inspection events with known costs and detection probabilities. However, continuous automated 

monitoring fundamentally alters this optimisation problem: fixed capital costs replace variable labour, detection 

probability approaches unity under favourable conditions, and the relevant constraint becomes computational 

throughput rather than inspector availability. 

Recent work on AI-enabled environmental monitoring demonstrates substantial efficiency gains relative 

to manual methods, though deployment remains concentrated in well-resourced jurisdictions. Our contribution 

extends this literature by explicitly characterising the accuracy-latency production frontier for maritime 

monitoring and demonstrating that low-cost architectures can achieve economically relevant detection thresholds. 

 

2.2 Remote Sensing and Detection Technologies 

SAR-based oil detection has evolved from manual interpretation to rule-based classification and, more 

recently, to CNN-based discrimination. While SAR provides all-weather capability and extensive coverage, its 

fundamental limitation lies in "look-alike" phenomena: natural biogenic films, low-wind slicks, and infrastructure 

shadows generate false positives that cannot be fully eliminated through spectral analysis alone. Studies report 

false positive rates ranging from 30-60% in near-shore environments, imposing substantial verification costs on 

operators. 

Optical and thermal imaging from aerial platforms (satellites, aircraft, UAVs) provide complementary information 

but generate data volumes that exceed manual review capacity. This creates an analytical bottleneck that 

automated segmentation can potentially resolve. 

 

2.3 Deep Learning for Semantic Segmentation 

The computer vision literature has established CNNs as the dominant approach for dense prediction 

tasks. U-Net and its variants (U-Net++, DeepLabV3+) employ encoder-decoder architectures with skip 

connections to preserve spatial information while extracting semantic features. These models excel at pixel-wise 

classification but treat segmentation as a pure vision problem without explicit object-level reasoning. 

More recently, transformer-based architectures (SegFormer) have demonstrated strong performance 

through long-range dependency modelling, while YOLO-family detectors have evolved to support instance 

segmentation through integration of classification, localisation, and mask prediction in unified architectures. The 

original dataset study evaluated U-Net variants and transformer models; our work extends this by introducing 

real-time instance segmentation as an alternative paradigm specifically optimised for sparse, high-value targets. 

 

2.4 Research Gap 

Existing studies focus primarily on maximizing detection metrics without explicitly addressing the 

operational trade-offs between sensitivity and specificity in continuous monitoring contexts. Furthermore, most 

work emphasizes model accuracy without considering deployment constraints or total cost of ownership. Our 

study fills this gap by: (1) benchmarking lightweight architectures suitable for edge deployment; (2) developing 

operating point selection methods that map to real-world cost functions; and (3) providing inference latency 

measurements that enable capacity planning for operational systems. 
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III. Methodology 
3.1 Data 

We utilise a publicly available dataset of annotated RGB aerial imagery captured via unmanned aerial 

vehicle (UAV) in port environments between September 2021 and September 2023. The dataset comprises 1,268 

high-resolution images acquired from altitudes ranging from 30 to 70 meters under varying illumination and 

environmental conditions. Original annotations provide pixel-level labels for four classes: Background, Oil, 

Water, and Other. For this analysis, we exclude the Background class as it provides no discriminative information 

for the segmentation task and would artificially inflate accuracy metrics due to its dominant pixel share. 

Table 1 presents the class-wise pixel distribution across the retained categories. The dataset exhibits 

moderate class imbalance, with Oil representing 22.9% of labelled pixels compared to 36.3% (Water) and 40.8% 

(Other). This imbalance is characteristic of real-world monitoring scenarios where spill events are relatively rare 

compared to normal operating conditions, a statistical property that poses methodological challenges but also 

reflects the operational environment these models must ultimately serve. 

 

Category #Images Pixel Count % Share 

Oil 994 527,361,085 22.9 

Water 929 835,851,192 36.3 

Other 1166 939,502,502 40.8 

Table 1: Class-wise distribution of annotated pixels across the dataset. The background class is excluded. 

 

We partition the dataset into mutually exclusive training (70%), validation (15%), and testing (15%) sets 

following the original splits to ensure comparability with prior work. For operational analysis, we further 

subdivide test frames into oil-present (n=202, containing any oil pixels) and no-oil (n=52, zero oil pixels) subsets, 

enabling separate evaluation of detection performance and false-positive characteristics. 

All images and corresponding masks undergo standardised preprocessing. For U-Net training, we utilise 

pixel-wise masks directly. For YOLOv8, which requires polygon-based annotations, we implement a conversion 

pipeline: (1) extract binary masks for each class via RGB color matching; (2) apply contour detection algorithms 

to extract polygon boundaries; (3) normalize coordinates to [0,1] range by dividing by image dimensions; (4) 

format as YOLO-compatible annotation files (class_id followed by normalized polygon vertices). Input images 

are resized to 640×640 pixels for primary evaluation; we additionally benchmark 512×512 resolution to 

characterize the speed-accuracy frontier. 

 

 
Figure 1: Class Distribution 

 



Real-Time Oil Spill Detection Using Deep Learning: Economic and Environmental Implications .. 

DOI: 10.9790/2402-1911015261                                    www.iosrjournals.org                                          Page | 55 

3.2 Model Architectures 

 
Figure 2: Diagram of the U-Net architecture. Left: contracting path (encoder), Right: expanding path 
(decoder), with skip connections. Our implementation used a similar structure with [3 encoder blocks → 
512 channels at bottleneck → symmetric decoder]. 

 

We implement a standard U-Net architecture as our semantic segmentation baseline. The encoder 

consists of three downsampling blocks (Conv-ReLU-Conv-ReLU-MaxPool), progressively expanding feature 

channels to 512 at the bottleneck. The decoder mirrors this structure with bilinear upsampling and skip connections 

from corresponding encoder layers. The final layer produces three-channel probability maps (one per foreground 

class). 

This implementation is intentionally simplified relative to the original dataset paper, which employed a 

U-Net with a pretrained EfficientNet-B4 encoder, attention mechanisms, and specialised activation functions. Our 

baseline contains no pretrained components and applies no explicit class balancing in the loss function. While this 

may underestimate the U-Net's maximum achievable performance, it provides a fair comparison against YOLOv8-

nano (which also lacks dataset-specific pretraining) and isolates the effect of the architectural paradigm. 

Training employs pixel-wise binary cross-entropy loss, treating each class as an independent binary 

segmentation task. We train for 50 epochs with batch size 4 and learning rate 1×10⁻⁴ using Adam optimisation. 

YOLOv8 represents a unified architecture for object detection and instance segmentation. Unlike 

semantic segmentation models that predict dense class maps, YOLO performs detection (bounding box + class) 

and segmentation (instance mask) jointly in a single forward pass. The nano variant (YOLOv8n-seg) contains 

3.7M parameters and employs an anchor-free detection paradigm with specialised loss functions for box 

regression, classification, and mask prediction. 

We fine-tune YOLOv8n-seg using the Ultralytics training pipeline with default hyperparameters: batch 

size 16, initial learning rate 0.01, 50 epochs. The model outputs per-instance masks with associated confidence 

scores, enabling threshold-based filtering for operating point selection. 

 

 
Figure 3: YOLOv8-seg Architecture Diagram 

 

The key architectural distinction is that U-Net performs dense prediction across all pixels, while YOLO first 

identifies object instances and then generates masks anchored to those detections. This object-centric approach 

may confer advantages for sparse targets (like oil patches) where explicit localisation improves feature learning. 
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3.3 Evaluation Protocol 

We evaluate segmentation quality using standard metrics: 

● Dice Coefficient: Harmonic mean of precision and recall, defined as 

2|X∩Y|/(|X|+|Y|) where X denotes predicted pixels and Y ground truth 
● Intersection over Union (IoU): |X∩Y|/|X∪Y|, equivalent to Jaccard index 
● Accuracy: Correct predictions divided by total pixels 
● Precision: True positives divided by predicted positives 

For class-imbalanced scenarios, we report both mean and median Dice scores, as the median provides robustness 

to outliers. 

To address the operational trade-off between detection sensitivity and false-

positive suppression, we implement a systematic threshold sweep procedure. For 

YOLOv8, we vary the detection confidence threshold T ∈ [0.00, 0.95] in increments 

of 0.05 and evaluate two distinct metrics: 
● Detection Performance (oil-present frames): Dice coefficient quantifies segmentation quality 

when oil is actually present 
● False Positive Control (no-oil frames): Specificity measures the proportion of clean frames 

correctly identified as oil-free; additionally, we compute mean predicted oil pixels as a proxy for false-

positive magnitude 
We visualise the Dice-specificity frontier and apply a knee-point heuristic to identify a balanced operating point: 

we define the optimal threshold as that which maximises perpendicular distance to the line connecting the 

minimum-specificity/maximum-Dice point and the maximum-specificity point. This provides an objective, data-

driven selection method that balances competing objectives without manual tuning. 

For comparison with continuous monitoring requirements, we also identify a 

high-specificity operating point (T ≥ 0.80) that prioritises false-positive 

suppression for scenarios where review capacity is limited. 
Beyond accuracy metrics, we measure inference latency and throughput (frames per second) on a standardised 

hardware platform (NVIDIA Tesla T4 GPU) at both 640×640 and 512×512 resolutions. These measurements 

enable practitioners to project system capacity and assess deployment feasibility for real-time applications. 

 

IV. Results 
4.1 Training Convergence 

Both models achieve stable convergence within 50 epochs. YOLOv8-nano demonstrates a smooth, monotonic 

reduction in segmentation loss (Figure 4), while U-Net exhibits more variable convergence with evidence of 

overfitting on the minority oil class despite the validation loss eventually stabilising (Figure 5). This divergence 

in convergence behaviour foreshadows the substantial performance gap observed in evaluation. 

4.2 Segmentation Performance 

Table 2 presents class-wise performance metrics for both architectures on the held-out test set. YOLOv8 

substantially outperforms U-Net across all metrics and both classes: 

 

 
 

Figure 4: YOLOv8-Nano Segmentation Loss (Normalised) 
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Figure 5: U-Net Binary Cross-Entropy Loss 

 

Overall Metrics Table 

Model Class Dice Acc. Precision 

YOLOv8 Oil 0.7091 0.9410 0.7270 

YOLOv8 Water 0.6595 0.9514 0.6709 

U-Net Oil 0.0006 0.6671 0.0197 

U-Net Water 0.3948 0.6062 0.3514 

Table 2: Comparison of segmentation performance across models for each class. 

 

 
Figure 6: Segmentation performance across models and classes 

 

The disparity is most pronounced for the minority oil class: YOLOv8 achieves Dice coefficient of 0.71 while U-

Net effectively fails to learn oil segmentation (Dice = 0.0006). This outcome indicates that under identical training 

conditions, U-Net's dense prediction paradigm without explicit localisation supervision proves insufficient for 

learning discriminative features for rare, low-contrast targets. 

For the water class, YOLOv8 again demonstrates superior performance (Dice = 0.66 vs. 0.39), though the gap is 

less extreme. This suggests that U-Net can learn features for high-prevalence classes but struggles with class 

imbalance, a known limitation of unweighted pixel-wise losses in semantic segmentation. 

 

4.3 Computational Efficiency Analysis 

Table 3 characterises the speed-accuracy trade-off across input resolutions: 

Input FPS Latency (ms) Oil Dice 

640×640 16.74 59.74 0.7192 

512×512 25.50 39.21 0.6597 

Table 3: Speed/accuracy trade-off on Tesla T4 (batch=1, conf=0.25, IoU=0.7, mask thr=0.5).  

Reducing input resolution from 640 to 512 pixels yields a 52% throughput improvement (25.5 vs. 16.7 FPS) at 

the cost of 8.3% relative decrease in oil segmentation quality. This trade-off curve suggests two deployment 

strategies: (1) 640×640 for offline incident analysis, where accuracy dominates; (2) 512×512 for continuous 

monitoring, where real-time processing is required and marginal accuracy loss is acceptable. 

For perspective, at 512×512 resolution, the system can process approximately 92,000 frames per hour on a single 

GPU, sufficient for parallel monitoring of multiple camera feeds or rapid batch processing of archived footage. 
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Figure 7: Confusion Matrix for 640 x 640 

 

 
Figure 8: Confusion Matrix for 512 x 512 

No-Oil Frames: Specificity and False-Positive Magnitude (Operational View) 

 

4.4 Error Structure and Confusion Analysis 

Normalised confusion matrices (Figures 7-8) reveal the dominant error modes. At 640×640 resolution, the 
primary misclassification pattern is water → oil false positives, while oil → water false negatives are relatively 
rare. This asymmetry has important operational implications: the system is more likely to generate false alerts 
on clean water than to miss actual spills. 
This error structure motivates separate evaluation of oil-present and no-oil frames, as aggregate metrics would 

obscure the distinction between detection sensitivity (performance when oil is present) and specificity (correct 

rejection of clean-water frames). 

4.5 Operating Point Selection 

Figure 9 presents the Dice-specificity frontier across confidence thresholds. The 

curve exhibits a broad plateau in Dice coefficient up to T ≈ 0.60, followed by 

gradual degradation as the threshold increases. Specificity on no-oil frames 

improves monotonically with threshold, approaching 100% at T > 0.90. 
Applying the knee-point heuristic identifies T = 0.35 as the balanced operating point. At this threshold: 

● Oil-present frames: Dice = 0.906 ± 0.145, Median = 0.948 

● No-oil frames: Specificity = 96.15% 

● False positive magnitude: Mean 61,900 predicted oil pixels when errors occur 

For high-specificity operation, T = 0.85 yields: 

● Oil-present frames: Dice = 0.772 

● No-oil frames: Specificity = 98.08% 

Table 4 summarises these operating points: 

 

Mode Threshold Dice (oil-present) Specificity (no-oil) 

Balanced (knee) 0.35 0.906 96.15% 

High-specificity 0.85 0.772 98.08% 

Table 4: Operating points selected from the threshold sweep. 
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The balanced mode provides high segmentation quality while maintaining acceptable false-positive control for 

incident investigation and post-event analysis. The high-specificity mode trades a 13% relative decrease in Dice 

for a substantial reduction in false alerts, appropriate for continuous monitoring where human review capacity is 

limited. 

 

 
 

Figure 9: Dice Specificity vs Confidence Thresholds 

 

4.6 Comparison with Prior Work 

The original dataset paper employed a U-Net with a pretrained EfficientNet-B4 encoder (>40M parameters) and 

reported oil-class Dice of 0.74. Our YOLOv8-nano achieves a Dice of 0.71 with only 3.7M parameters (10× 

reduction) and inference latency of 16.7ms versus 80-100ms for the original model (5× speedup). 

 

Model Parameters (M) Inference Time (ms) 

U-Net + EfficientNet 40+ 80–100 

YOLOv8-Nano (ours) 3.7 16.7 

Table 5: Model complexity and inference latency comparison at 640×640 resolution on an NVIDIA Tesla T4 

GPU. 

This result demonstrates that lightweight architectures can achieve near-state-of-the-art detection performance at 

dramatically reduced computational cost, making edge deployment economically feasible and reducing total cost 

of ownership for operational monitoring systems. 

 

V. Discussion 
5.1 Economic Interpretation of Results 

The primary finding, that lightweight architectures achieve operationally relevant detection thresholds, 

has direct economic implications for monitoring system deployment. Traditional approaches impose high variable 

costs (patrol hours, inspector salaries) while providing limited coverage. Satellite-based monitoring reduces 

variable costs but imposes substantial capital costs and analytical overhead. Edge-deployed AI systems offer a 

third paradigm: moderate fixed costs (hardware, training) with near-zero marginal cost per additional frame 

analysed. 

Under this cost structure, the optimal deployment strategy shifts from intensive but sparse monitoring 

(e.g., scheduled patrols) toward extensive continuous monitoring, fundamentally altering the detection probability 

frontier. Our results indicate that this shift is technically feasible: a single GPU can process multiple camera feeds 

in real-time, and the accuracy-threshold trade-off enables explicit calibration to match operational requirements. 

 

5.2 Class Imbalance and Model Selection 

The dramatic performance gap between YOLOv8 and our U-Net baseline (Dice 0.71 vs. 0.0006 on oil) 

primarily reflects differential resilience to class imbalance. YOLO's object-detection foundation provides explicit 

localisation supervision that helps the model learn representations for rare targets. In contrast, pixel-wise cross-

entropy without class weighting or hard negative mining allows the model to achieve low loss by simply predicting 

the majority class. 

This finding aligns with the broader literature on imbalanced learning: when positive samples are scarce, 

architectures with explicit instance-level supervision tend to outperform pure dense prediction. For practitioners, 
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this suggests that instance segmentation should be the default paradigm for maritime monitoring tasks where 

target classes (spills) are inherently rare relative to background (clean water). 

5.3 Operational Decision Framework 

The threshold-sweeping procedure and dual operating points provide a principled approach to system 

configuration. The key insight is that different deployment contexts impose different cost functions: 

Incident Investigation: High Dice coefficient is paramount; false positives impose minimal cost (human analyst 

reviews all detections anyway). Use balanced operating point (T = 0.35). 

Continuous Monitoring: False positives generate review burden and alert fatigue; missing spills entirely is 

catastrophic. Use high-specificity mode (T = 0.85) to reduce the false-positive rate while maintaining reasonable 

sensitivity. 

This framing transforms model selection from a pure accuracy maximisation problem into an explicit cost-benefit 

optimisation aligned with operational objectives. 

 

5.4 Deployment Considerations for the UAE Context 

The UAE's maritime environment presents specific challenges and opportunities: 

1. Desalination Dependencies: Coastal desalination plants create acute sensitivity to spill events. High 

detection sensitivity is valuable not only for environmental protection but also for water security. 
2. Infrastructure Density: Port and near-shore environments generate substantial "look-alike" features 

(wakes, shadows, infrastructure). The model's performance on this dataset suggests robustness to these 

confounders, though offshore validation is required. 
3. Policy Alignment: The UAE's Net Zero 2050 initiative and ADNOC's ENERGY AI program provide 

institutional support for AI-enabled environmental monitoring. Our results demonstrate technical feasibility for 

one component of this broader ecosystem. 
From an economic perspective, the marginal cost of adding monitoring capacity is low once initial infrastructure 

is deployed. This suggests that the optimal strategy is extensive coverage across all critical zones rather than 

intensive monitoring of select locations. 

 

 
Figure 10: Oil class segmentation. Ground Truth (Green), YOLOv8 Prediction (Red), and U-Net Prediction 

(Blue). 

 

 
Figure 11: Water class segmentation. Ground Truth (Green), YOLOv8 Prediction (Red) and U-Net Prediction 

(Blue). 

 

5.5 Limitations and Boundary Conditions 

Several factors constrain the generalizability of these findings: 

1. Dataset Scope: Training data derive exclusively from port environments. Offshore conditions (heavy 

seas, strong specular reflection, extreme weather) may alter model performance unpredictably. Transfer learning 

or domain adaptation may be required for broader deployment. 
2. Temporal Modelling: All analyses assume independent frames. Operational systems would benefit from 

short-horizon temporal smoothing to suppress transient false positives and stabilise boundaries across sequential 

frames. 
3. Baseline Strength: Our U-Net implementation intentionally omits pretraining, attention, and class 

balancing to isolate architectural effects. Stronger baselines would narrow the performance gap but would also 
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increase computational cost, potentially negating the efficiency advantages that motivate lightweight 

architectures. 
4. Operating Point Robustness: Threshold selection reflects this dataset's class distribution and error 

characteristics. Different camera systems, lighting conditions, or geographic regions may require recalibration. 
 

VI. Conclusion 
This study demonstrates that lightweight instance segmentation architectures achieve operationally 

relevant oil spill detection performance while maintaining computational efficiency suitable for edge deployment. 

YOLOv8-nano substantially outperforms a classical U-Net baseline (oil-class Dice 0.71 vs. 0.0006) and 

approaches the performance of models with 10× more parameters while offering 5× faster inference. 

Beyond point estimates of accuracy, we develop an operational framework for threshold selection that 

enables practitioners to explicitly balance detection completeness against false-positive suppression, matching 

system behaviour to deployment context. This operational perspective reflects the economic reality that different 

monitoring scenarios impose different cost structures. 

For maritime infrastructure in the UAE and similar high-risk regions, these results support the technical 

and economic feasibility of AI-enabled continuous monitoring. While limitations remain, the path forward is clear: 

lightweight models can deliver accurate real-time segmentation, and systematic operating-point selection can 

align system behaviour with operational objectives and economic constraints. 

Future work should focus on temporal modelling, offshore validation, and integration with existing 

surveillance infrastructure to transition these methods from research demonstration to operational deployment. 

Ultimately, the convergence of environmental policy objectives (Net Zero 2050), regional economic priorities 

(energy sector sustainability), and technical capability (efficient AI architectures) creates a favourable 

environment for the adoption of automated monitoring systems that reduce both environmental damage and 

economic losses from maritime oil spills. 
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