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Real-Time Oil Spill Detection Using Deep Learning:
Economic and Environmental Implications for Maritime
Infrastructure

Abstract

Maritime oil spills impose substantial economic externalities and environmental costs, particularly in strategic
waterways with concentrated petroleum infrastructure. This study examines the application of modern deep
learning architectures to automated oil spill detection, with specific emphasis on deployment feasibility in
resource-constrained operational environments. We conduct a comparative benchmark analysis of YOLOvS
instance segmentation against classical U-Net semantic segmentation using publicly available annotated aerial
imagery. Our empirical results demonstrate that lightweight YOLOVS architectures achieve superior performance
on minority-class detection (Intersection over Union: 0.71 vs. 0.0006 for oil segmentation) while maintaining
computational efficiency suitable for edge deployment. Through systematic threshold optimisation, we establish
dual operating modes that balance detection sensitivity against false-positive suppression, addressing the
operational cost trade-offs inherent in continuous monitoring systems. These findings contribute to the growing
literature on Al-enabled environmental monitoring and provide empirical support for policy initiatives targeting
sustainable maritime operations.

Date of Submission: 10-11-2025 Date of Acceptance: 21-11-2025

I.  Introduction
1.1 Economic Context and Problem Scope

Oil spills represent a category of environmental disaster with substantial negative externalities affecting
multiple economic sectors simultaneously. The maritime petroleum industry, while generating significant
economic rents, creates attendant risks of catastrophic spills that impose costs on fisheries, tourism, desalination
infrastructure, and ecosystem services. These risks are particularly concentrated in strategic maritime corridors
characterized by high vessel density and proximity to critical infrastructure.

The Arabian Gulf exemplifies this concentration of risk and value. Containing approximately 65% of
proven global petroleum reserves, the region processes over 25,000 tanker transits annually through the Strait of
Hormuz alone. The United Arab Emirates (UAE), positioned at the nexus of offshore extraction and international
shipping lanes, faces acute exposure to spill risks. Historical incidents demonstrate the magnitude of potential
damages: the 2001 Jebel Ali spill affected multiple coastal zones, including high-value tourism areas (Mamzar,
Jumeirah), while 1994 records document 15 tanker collisions along UAE shores within a single calendar year.

1.2 Economic Costs of Detection Delays

The economic impact of oil spills follows a non-linear damage function: early detection and rapid
response can reduce total damages by orders of magnitude relative to delayed intervention. Traditional monitoring
methodologies: visual inspection, chemical sampling, and patrol-based surveillance, impose high labour costs
while providing limited spatial and temporal coverage. Synthetic Aperture Radar (SAR) and optical satellite
monitoring extend coverage but introduce two critical inefficiencies: (1) data volume exceeds manual processing
capacity, creating analytical bottlenecks; and (2) high false-positive rates generate unnecessary mobilisation costs
for response teams.

For the UAE specifically, spill risks interact with critical desalination infrastructure dependencies.
Approximately 42% of the nation's potable water derives from coastal desalination plants, creating a direct channel
through which maritime pollution threatens water security, a strategic economic vulnerability with potentially
severe welfare implications.

1.3 Research Contribution
This study addresses the detection bottleneck through application of convolutional neural networks (CNNs) to
automated spill segmentation. We make three primary contributions to the literature:
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Methodological: We provide the first direct comparison of real-time instance segmentation (YOLOv8) against
semantic segmentation baselines (U-Net) for maritime oil detection, using identical data partitions and
preprocessing protocols to ensure internal validity.

Operational: We develop and validate a threshold-based operating point selection methodology that allows
practitioners to explicitly trade off detection completeness against false-positive suppression, matching system
behaviour to deployment context (incident investigation vs. continuous monitoring).

Economic: We demonstrate that lightweight architectures can achieve near-state-of-the-art detection performance
at dramatically reduced computational cost (10x fewer parameters, 5x faster inference), making edge deployment
economically feasible and reducing the total cost of ownership for monitoring systems.

Our results indicate that with appropriate architecture selection and threshold tuning, automated detection systems
can achieve operational utility for both retrospective analysis and prospective alerting, supporting cost-effective
pollution monitoring aligned with environmental policy objectives such as the UAE's Net Zero 2050 initiative.

II.  Literature Review
2.1 Economics of Environmental Monitoring

The environmental economics literature establishes that optimal monitoring intensity balances the
marginal benefit of damage reduction against the marginal cost of surveillance. Traditional enforcement models
assume discrete inspection events with known costs and detection probabilities. However, continuous automated
monitoring fundamentally alters this optimisation problem: fixed capital costs replace variable labour, detection
probability approaches unity under favourable conditions, and the relevant constraint becomes computational
throughput rather than inspector availability.

Recent work on Al-enabled environmental monitoring demonstrates substantial efficiency gains relative
to manual methods, though deployment remains concentrated in well-resourced jurisdictions. Our contribution
extends this literature by explicitly characterising the accuracy-latency production frontier for maritime
monitoring and demonstrating that low-cost architectures can achieve economically relevant detection thresholds.

2.2 Remote Sensing and Detection Technologies

SAR-based oil detection has evolved from manual interpretation to rule-based classification and, more
recently, to CNN-based discrimination. While SAR provides all-weather capability and extensive coverage, its
fundamental limitation lies in "look-alike" phenomena: natural biogenic films, low-wind slicks, and infrastructure
shadows generate false positives that cannot be fully eliminated through spectral analysis alone. Studies report
false positive rates ranging from 30-60% in near-shore environments, imposing substantial verification costs on
operators.
Optical and thermal imaging from aerial platforms (satellites, aircraft, UAVs) provide complementary information
but generate data volumes that exceed manual review capacity. This creates an analytical bottleneck that
automated segmentation can potentially resolve.

2.3 Deep Learning for Semantic Segmentation

The computer vision literature has established CNNs as the dominant approach for dense prediction
tasks. U-Net and its variants (U-Net++, DeepLabV3+) employ encoder-decoder architectures with skip
connections to preserve spatial information while extracting semantic features. These models excel at pixel-wise
classification but treat segmentation as a pure vision problem without explicit object-level reasoning.

More recently, transformer-based architectures (SegFormer) have demonstrated strong performance
through long-range dependency modelling, while YOLO-family detectors have evolved to support instance
segmentation through integration of classification, localisation, and mask prediction in unified architectures. The
original dataset study evaluated U-Net variants and transformer models; our work extends this by introducing
real-time instance segmentation as an alternative paradigm specifically optimised for sparse, high-value targets.

2.4 Research Gap

Existing studies focus primarily on maximizing detection metrics without explicitly addressing the
operational trade-offs between sensitivity and specificity in continuous monitoring contexts. Furthermore, most
work emphasizes model accuracy without considering deployment constraints or total cost of ownership. Our
study fills this gap by: (1) benchmarking lightweight architectures suitable for edge deployment; (2) developing
operating point selection methods that map to real-world cost functions; and (3) providing inference latency
measurements that enable capacity planning for operational systems.
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III.  Methodology
3.1 Data

We utilise a publicly available dataset of annotated RGB aerial imagery captured via unmanned aerial
vehicle (UAV) in port environments between September 2021 and September 2023. The dataset comprises 1,268
high-resolution images acquired from altitudes ranging from 30 to 70 meters under varying illumination and
environmental conditions. Original annotations provide pixel-level labels for four classes: Background, Oil,
Water, and Other. For this analysis, we exclude the Background class as it provides no discriminative information
for the segmentation task and would artificially inflate accuracy metrics due to its dominant pixel share.

Table 1 presents the class-wise pixel distribution across the retained categories. The dataset exhibits
moderate class imbalance, with Oil representing 22.9% of labelled pixels compared to 36.3% (Water) and 40.8%
(Other). This imbalance is characteristic of real-world monitoring scenarios where spill events are relatively rare
compared to normal operating conditions, a statistical property that poses methodological challenges but also
reflects the operational environment these models must ultimately serve.

Category #Images Pixel Count % Share
Oil 994 527,361,085 229
Water 929 835,851,192 36.3
Other 1166 939,502,502 40.8

Table 1: Class-wise distribution of annotated pixels across the dataset. The background class is excluded.

We partition the dataset into mutually exclusive training (70%), validation (15%), and testing (15%) sets
following the original splits to ensure comparability with prior work. For operational analysis, we further
subdivide test frames into oil-present (n=202, containing any oil pixels) and no-oil (n=52, zero oil pixels) subsets,
enabling separate evaluation of detection performance and false-positive characteristics.

All images and corresponding masks undergo standardised preprocessing. For U-Net training, we utilise
pixel-wise masks directly. For YOLOVS8, which requires polygon-based annotations, we implement a conversion
pipeline: (1) extract binary masks for each class via RGB color matching; (2) apply contour detection algorithms
to extract polygon boundaries; (3) normalize coordinates to [0,1] range by dividing by image dimensions; (4)
format as YOLO-compatible annotation files (class_id followed by normalized polygon vertices). Input images
are resized to 640x640 pixels for primary evaluation; we additionally benchmark 512x512 resolution to
characterize the speed-accuracy frontier.

Class Distribution in Original Dataset (Excluding Background)
50}

40.8%

Relative Pixel Share (%)

Water Other
Class

Figure 1: Class Distribution
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3.2 Model Architectures
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Figure 2: Diagram of the U-Net architecture. Left: contracting path (encoder), Right: expanding path
(decoder), with skip connections. Our implementation used a similar structure with [3 encoder blocks —
512 channels at bottleneck — symmetric decoder].

We implement a standard U-Net architecture as our semantic segmentation baseline. The encoder
consists of three downsampling blocks (Conv-ReLU-Conv-ReLU-MaxPool), progressively expanding feature
channels to 512 at the bottleneck. The decoder mirrors this structure with bilinear upsampling and skip connections
from corresponding encoder layers. The final layer produces three-channel probability maps (one per foreground
class).

This implementation is intentionally simplified relative to the original dataset paper, which employed a
U-Net with a pretrained EfficientNet-B4 encoder, attention mechanisms, and specialised activation functions. Our
baseline contains no pretrained components and applies no explicit class balancing in the loss function. While this
may underestimate the U-Net's maximum achievable performance, it provides a fair comparison against YOLOv8-
nano (which also lacks dataset-specific pretraining) and isolates the effect of the architectural paradigm.

Training employs pixel-wise binary cross-entropy loss, treating each class as an independent binary
segmentation task. We train for 50 epochs with batch size 4 and learning rate 1x10~* using Adam optimisation.

YOLOV8 represents a unified architecture for object detection and instance segmentation. Unlike
semantic segmentation models that predict dense class maps, YOLO performs detection (bounding box + class)
and segmentation (instance mask) jointly in a single forward pass. The nano variant (YOLOv8n-seg) contains
3.7M parameters and employs an anchor-free detection paradigm with specialised loss functions for box
regression, classification, and mask prediction.

We fine-tune YOLOvS8n-seg using the Ultralytics training pipeline with default hyperparameters: batch
size 16, initial learning rate 0.01, 50 epochs. The model outputs per-instance masks with associated confidence
scores, enabling threshold-based filtering for operating point selection.

Backbone FPN Feature Pyramid @

* 9-eeeet
Conv Block  Upsample Block

Figure 3: YOLOvV8-seg Architecture Diagram

The key architectural distinction is that U-Net performs dense prediction across all pixels, while YOLO first
identifies object instances and then generates masks anchored to those detections. This object-centric approach
may confer advantages for sparse targets (like oil patches) where explicit localisation improves feature learning.
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3.3 Evaluation Protocol
We evaluate segmentation quality using standard metrics:

[ ] Dice Coefficient: Harmonic mean of precision and recall, defined as
21XNY|/(IX]1+1Y|) where X denotes predicted pixels and Y ground truth

() Intersection over Union (IoU): |XNY|/IXUYI, equivalent to Jaccard index

[ Accuracy: Correct predictions divided by total pixels

[ Precision: True positives divided by predicted positives

For class-imbalanced scenarios, we report both mean and median Dice scores, as the median provides robustness
to outliers.

To address the operational trade—off between detection sensitivity and false—
positive suppression, we implement a systematic threshold sweep procedure. For
YOLOvS8, we vary the detection confidence threshold T € [0.00, 0.95] in increments
of 0.05 and evaluate two distinct metrics:

[ ] Detection Performance (oil-present frames): Dice coefficient quantifies segmentation quality
when oil is actually present
[ False Positive Control (no-oil frames): Specificity measures the proportion of clean frames

correctly identified as oil-free; additionally, we compute mean predicted oil pixels as a proxy for false-
positive magnitude
We visualise the Dice-specificity frontier and apply a knee-point heuristic to identify a balanced operating point:
we define the optimal threshold as that which maximises perpendicular distance to the line connecting the
minimum-specificity/maximum-Dice point and the maximum-specificity point. This provides an objective, data-
driven selection method that balances competing objectives without manual tuning.
For comparison with continuous monitoring requirements, we also identify a
high—specificity operating point (T = 0.80) that prioritises false—positive
suppression for scenarios where review capacity is limited.
Beyond accuracy metrics, we measure inference latency and throughput (frames per second) on a standardised
hardware platform (NVIDIA Tesla T4 GPU) at both 640x640 and 512x512 resolutions. These measurements
enable practitioners to project system capacity and assess deployment feasibility for real-time applications.

IV.  Results
4.1 Training Convergence
Both models achieve stable convergence within 50 epochs. YOLOv8-nano demonstrates a smooth, monotonic
reduction in segmentation loss (Figure 4), while U-Net exhibits more variable convergence with evidence of
overfitting on the minority oil class despite the validation loss eventually stabilising (Figure 5). This divergence
in convergence behaviour foreshadows the substantial performance gap observed in evaluation.
4.2 Segmentation Performance
Table 2 presents class-wise performance metrics for both architectures on the held-out test set. YOLOVS
substantially outperforms U-Net across all metrics and both classes:

Normalized Segmentation Loss per Epoch (YOLOv8-Nano)

0.8

0.4

Normalized Segmentation Loss

0.2

0.0

0 5 10 15 20 25 30 35 40 a5 50
Epoch

Figure 4: YOLOvS8-Nano Segmentation Loss (Normalised)
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Figure 5: U-Net Binary Cross-Entropy Loss

Overall Metrics Table

Model Class Dice Acc. Precision
YOLOv8 Oil 0.7091 0.9410 0.7270
YOLOv8 Water 0.6595 0.9514 0.6709
U-Net Oil 0.0006 0.6671 0.0197
U-Net Water 0.3948 0.6062 0.3514

Table 2: Comparison of segmentation performance across models for each class.

Dice Accuracy Precision

1.0
YOLOVE

U-Net
0.8

0.6
0.4

0.2

0.0

Figure 6: Segmentation performance across models and classes

The disparity is most pronounced for the minority oil class: YOLOVS achieves Dice coefficient of 0.71 while U-
Net effectively fails to learn oil segmentation (Dice = 0.0006). This outcome indicates that under identical training
conditions, U-Net's dense prediction paradigm without explicit localisation supervision proves insufficient for
learning discriminative features for rare, low-contrast targets.

For the water class, YOLOvS8 again demonstrates superior performance (Dice = 0.66 vs. 0.39), though the gap is
less extreme. This suggests that U-Net can learn features for high-prevalence classes but struggles with class
imbalance, a known limitation of unweighted pixel-wise losses in semantic segmentation.

4.3 Computational Efficiency Analysis
Table 3 characterises the speed-accuracy trade-off across input resolutions:

Input FPS Latency (ms) Qil Dice
640%x640 16.74 59.74 0.7192
512%512 25.50 39.21 0.6597

Table 3: Speed/accuracy trade-off on Tesla T4 (batch=1, conf=0.25, loU=0.7, mask thr=0.5).

Reducing input resolution from 640 to 512 pixels yields a 52% throughput improvement (25.5 vs. 16.7 FPS) at
the cost of 8.3% relative decrease in oil segmentation quality. This trade-off curve suggests two deployment
strategies: (1) 640x640 for offline incident analysis, where accuracy dominates; (2) 512x512 for continuous
monitoring, where real-time processing is required and marginal accuracy loss is acceptable.

For perspective, at 512x512 resolution, the system can process approximately 92,000 frames per hour on a single
GPU, sufficient for parallel monitoring of multiple camera feeds or rapid batch processing of archived footage.
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Figure 7: Confusion Matrix for 640 x 640
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Figure 8: Confusion Matrix for 512 x 512
No-Oil Frames: Specificity and False-Positive Magnitude (Operational View)

4.4 Error Structure and Confusion Analysis

Normalised confusion matrices (Figures 7-8) reveal the dominant error modes. At 640x640 resolution, the
primary misclassification pattern is water — oil false positives, while oil = water false negatives are relatively
rare. This asymmetry has important operational implications: the system is more likely to generate false alerts
on clean water than to miss actual spills.

This error structure motivates separate evaluation of oil-present and no-oil frames, as aggregate metrics would
obscure the distinction between detection sensitivity (performance when oil is present) and specificity (correct
rejection of clean-water frames).

4.5 Operating Point Selection

Figure 9 presents the Dice—specificity frontier across confidence thresholds. The
curve exhibits a broad plateau in Dice coefficient up to T = 0.60, followed by
gradual degradation as the threshold increases. Specificity on no-oil frames
improves monotonically with threshold, approaching 100% at T > 0.90.

Applying the knee-point heuristic identifies T = 0.35 as the balanced operating point. At this threshold:

° Oil-present frames: Dice = 0.906 + 0.145, Median = 0.948

° No-oil frames: Specificity = 96.15%

° False positive magnitude: Mean 61,900 predicted oil pixels when errors occur
For high-specificity operation, T = 0.85 yields:

° Oil-present frames: Dice = 0.772

° No-oil frames: Specificity = 98.08%

Table 4 summarises these operating points:

Mode Threshold Dice (oil-present) Specificity (no-oil)
Balanced (knee) 0.35 0.906 96.15%
High-specificity 0.85 0.772 98.08%

Table 4: Operating points selected from the threshold sweep.
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The balanced mode provides high segmentation quality while maintaining acceptable false-positive control for
incident investigation and post-event analysis. The high-specificity mode trades a 13% relative decrease in Dice
for a substantial reduction in false alerts, appropriate for continuous monitoring where human review capacity is

limited.
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Figure 9: Dice Specificity vs Confidence Thresholds

4.6 Comparison with Prior Work
The original dataset paper employed a U-Net with a pretrained EfficientNet-B4 encoder (>40M parameters) and

reported oil-class Dice of 0.74. Our YOLOvS8-nano achieves a Dice of 0.71 with only 3.7M parameters (10x
reduction) and inference latency of 16.7ms versus 80-100ms for the original model (5% speedup).

Model Parameters (M) Inference Time (ms)
U-Net + EfficientNet 40+ 80-100
YOLOvV8-Nano (ours) 3.7 16.7
Table 5: Model complexity and inference latency comparison at 640x640 resolution on an NVIDIA Tesla T4
GPU.

This result demonstrates that lightweight architectures can achieve near-state-of-the-art detection performance at
dramatically reduced computational cost, making edge deployment economically feasible and reducing total cost

of ownership for operational monitoring systems.

V.  Discussion

5.1 Economic Interpretation of Results

The primary finding, that lightweight architectures achieve operationally relevant detection thresholds,
has direct economic implications for monitoring system deployment. Traditional approaches impose high variable
costs (patrol hours, inspector salaries) while providing limited coverage. Satellite-based monitoring reduces
variable costs but imposes substantial capital costs and analytical overhead. Edge-deployed Al systems offer a
third paradigm: moderate fixed costs (hardware, training) with near-zero marginal cost per additional frame
analysed.
Under this cost structure, the optimal deployment strategy shifts from intensive but sparse monitoring
(e.g., scheduled patrols) toward extensive continuous monitoring, fundamentally altering the detection probability
frontier. Our results indicate that this shift is technically feasible: a single GPU can process multiple camera feeds
in real-time, and the accuracy-threshold trade-off enables explicit calibration to match operational requirements.

5.2 Class Imbalance and Model Selection
The dramatic performance gap between YOLOvVS and our U-Net baseline (Dice 0.71 vs. 0.0006 on oil)

primarily reflects differential resilience to class imbalance. YOLO's object-detection foundation provides explicit
localisation supervision that helps the model learn representations for rare targets. In contrast, pixel-wise cross-
entropy without class weighting or hard negative mining allows the model to achieve low loss by simply predicting
the majority class.

This finding aligns with the broader literature on imbalanced learning: when positive samples are scarce,
architectures with explicit instance-level supervision tend to outperform pure dense prediction. For practitioners,
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this suggests that instance segmentation should be the default paradigm for maritime monitoring tasks where
target classes (spills) are inherently rare relative to background (clean water).

5.3 Operational Decision Framework

The threshold-sweeping procedure and dual operating points provide a principled approach to system
configuration. The key insight is that different deployment contexts impose different cost functions:

Incident Investigation: High Dice coefficient is paramount; false positives impose minimal cost (human analyst
reviews all detections anyway). Use balanced operating point (T = 0.35).

Continuous Monitoring: False positives generate review burden and alert fatigue; missing spills entirely is
catastrophic. Use high-specificity mode (T = 0.85) to reduce the false-positive rate while maintaining reasonable
sensitivity.

This framing transforms model selection from a pure accuracy maximisation problem into an explicit cost-benefit
optimisation aligned with operational objectives.

5.4 Deployment Considerations for the UAE Context
The UAE's maritime environment presents specific challenges and opportunities:

1. Desalination Dependencies: Coastal desalination plants create acute sensitivity to spill events. High
detection sensitivity is valuable not only for environmental protection but also for water security.
2. Infrastructure Density: Port and near-shore environments generate substantial "look-alike" features

(wakes, shadows, infrastructure). The model's performance on this dataset suggests robustness to these
confounders, though offshore validation is required.

3. Policy Alignment: The UAE's Net Zero 2050 initiative and ADNOC's ENERGY Al program provide
institutional support for Al-enabled environmental monitoring. Our results demonstrate technical feasibility for
one component of this broader ecosystem.

From an economic perspective, the marginal cost of adding monitoring capacity is low once initial infrastructure
is deployed. This suggests that the optimal strategy is extensive coverage across all critical zones rather than
intensive monitoring of select locations.

Ground Truth (Green) YOLO Prediction (Red) U-Net Prediction (Blue)

7

(Blue).

YOLO Prediction (Red)

= ‘ % Hiem

Figure 11: Water class segmentation. Ground Truth (Green), YOLOvV8 Prediction (Red) and U-Net Prediction
(Blue).

5.5 Limitations and Boundary Conditions

Several factors constrain the generalizability of these findings:

1. Dataset Scope: Training data derive exclusively from port environments. Offshore conditions (heavy
seas, strong specular reflection, extreme weather) may alter model performance unpredictably. Transfer learning
or domain adaptation may be required for broader deployment.

2. Temporal Modelling: All analyses assume independent frames. Operational systems would benefit from
short-horizon temporal smoothing to suppress transient false positives and stabilise boundaries across sequential
frames.

3. Baseline Strength: Our U-Net implementation intentionally omits pretraining, attention, and class
balancing to isolate architectural effects. Stronger baselines would narrow the performance gap but would also
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increase computational cost, potentially negating the efficiency advantages that motivate lightweight
architectures.

4. Operating Point Robustness: Threshold selection reflects this dataset's class distribution and error
characteristics. Different camera systems, lighting conditions, or geographic regions may require recalibration.

VI.  Conclusion

This study demonstrates that lightweight instance segmentation architectures achieve operationally
relevant oil spill detection performance while maintaining computational efficiency suitable for edge deployment.
YOLOvS8-nano substantially outperforms a classical U-Net baseline (oil-class Dice 0.71 vs. 0.0006) and
approaches the performance of models with 10x more parameters while offering 5x faster inference.

Beyond point estimates of accuracy, we develop an operational framework for threshold selection that
enables practitioners to explicitly balance detection completeness against false-positive suppression, matching
system behaviour to deployment context. This operational perspective reflects the economic reality that different
monitoring scenarios impose different cost structures.

For maritime infrastructure in the UAE and similar high-risk regions, these results support the technical
and economic feasibility of Al-enabled continuous monitoring. While limitations remain, the path forward is clear:
lightweight models can deliver accurate real-time segmentation, and systematic operating-point selection can
align system behaviour with operational objectives and economic constraints.

Future work should focus on temporal modelling, offshore validation, and integration with existing
surveillance infrastructure to transition these methods from research demonstration to operational deployment.
Ultimately, the convergence of environmental policy objectives (Net Zero 2050), regional economic priorities
(energy sector sustainability), and technical capability (efficient Al architectures) creates a favourable
environment for the adoption of automated monitoring systems that reduce both environmental damage and
economic losses from maritime oil spills.
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