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Abstract: The validation of a credit risk scorecards is very important. Lenders therefore need a proper 

validation methodology to convince their supervisors that their credit scoring models are performing well. In 

this paper we propose a simple validation methodology by using bootstrap. We compare this methodology by 

applying it to a default model of microfinance credit scorecard. 
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I. Introduction 
The main principle of a credit scoring system is assigning to each borrower a score in order to separate 

the bad borrowers (defaulters) and the good borrowers (non-defaulters). For example, a borrower with high 

estimated default probability is given a high score. So, a scoring system can be seen as a classification tool in 

the sense of providing indications of the borrower's possible status in the future. This procedure is commonly 

called discrimination. Thus, the discriminatory power of a scoring system denotes the model's ability to 

discriminate defaulters from non-defaulters. Assessing the discriminatory power is one of the major tasks in 

validating a credit scoring model. 

These days, a lot of emphasis has been given to the validation of the internal rating system. Here the 

validation includes both the assessment of model discriminatory power and calibration. While the 

discriminatory power of a scoring model depends on the difference of the score distribution of the defaulters and 

non-defaulters, the calibration of a scoring system depends on the difference of the estimated probability of 

default and the observed default rates. So for a proper modelling of a credit scorecard requires a large number of 

sample data. If the sample size ‘n’ is small then validating the data is very difficult. In this case, we found that 

the model suffer either substantial bias or variability. Validation is obviously not only a statistical exercise. 

Managerial judgment and a qualitative analysis of the model are also highly important. However, the initial 

validation will primarily be technical and model based. Moreover, statistical validation is needed to obtain 

scientific rigor and a common yardstick for the validation exercise. For these reasons, this article will focus on a 

quantitative validation technique and propose a statistical validation methodology. The main focus of this paper 

is how to adjust the parameter estimate of the model after running the bootstrap method and then checking the 

robustness of the adjusted parameter.  

 This paper divided in to four sections. First an introduction to the most general concepts of the credit 

scoring methodologies and followed by the statistical techniques like variable selection, logistic regression and 

statistical model validation is described. The main objective of this paper is to find out a validation methodology 

using bootstrap which is described in Section 3.3. The methodology of validating a logit model applied in 

medical science is used in this paper which is based on Harrell’s c-index (Harrell 2001).  In the last section, 

some descriptive statistics of the datasets used in the analysis and the experimental results are shown. Finally, 

the conclusion is presented. 

 
II. Methodologies For Credit Scoring 

The three main approaches for credit scoring is judgmental, statistical and non-statistical (Thomas, 

2000). This paper focuses on the statistical approach, which is based on historical data and includes 

methodologies as discriminant analysis and logistic regression. 

Discriminant analysis is a computationally efficient procedure, but is hampered by the assumption of 

normality distributed data (Sharma 1996; Vogelgesgang, 2003). As the models presented in this paper include 

multiple dummy variables, the normality assumption is violated and therefore discriminant analysis has not been 

adopted. 

Logistic regression employs maximum likelihood estimators which require computationally more demanding 

procedures than discriminant analysis and linear regression do. However, logistic regression models are not 

constrained by the assumption of normally distributed data (Sharma, 1996) and they model a probability; their 

output is a percentage term which is directly interpretable and usable to perform operational actions such as 

setting cut-off values; Due to these benefits, logit model have been adopted in this paper. 
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III. Explanatory Variable Treatment And Selection 
Once data has been prepared and a statistical model has been chosen, the next step is to decide on the 

treatment of the explanatory variables. Afterwards, the explanatory variable selection process needs to be 

considered. Several of the explanatory variables in a credit scoring context are typically categorical (e.g. 

purpose, previous debt). According to Thomas (2000), there are two options to implement categorical variables 

in a scoring model. First, a binary (dummy) variable can be created for each possible category of an explanatory 

variable. Such implementation permits the modeling of non-linear behavior. Crook et al. (1992) note that such a 

dummy approach can considerably reduce the degrees of freedom available in the model. In addition, near-

singularity problems might arise for dummy coded variables when executing the logistic regression. Therefore, 

another approach, Weight of Evidence (WoE), works with one variable for all categories of an explanatory 

variable (Crook et al., 1992; Thomas, 2000; Hand and Henley,1997).  

The WoE measure the strength of each attributes, or grouped attributes in separating good and bad 

accounts. It is a measure of difference between the proportion of goods and bad in each attribute (i.e, the odds of 

a person with that attribute being good or bad). WoE is based on odds calculation and the details are given 

below. 

Let bi defined as the number of defaulted loans that belong to the i-th group, gi is defined similarly for 

the non-defaulted loans. B and G are the total number of defaulted and non-defaulted loans present in the whole 

sample, defined as: 

  ∑  

 

   

       ∑  

 

   

 

 

In the first WoE step, to avoid over fitting, categories are put together in n groups based on similarity 

of gi/(gi + bi). Next, each of the newly created n groups receives a coding based on its distribution of defaulted 

and non-defaulted loans. Hence, every weight of evidence variable is composed of n values, one for each of the 

groups. Boyle et al. (1992) propose different implementations for the coding procedure:  

(i) gi/bi,  (ii) gi/(gi + bi),  (iii) bi/(gi + bi),  (iv) log(gi/(gi + bi)), (v)    ln(gi/bi) + ln(B/G).  

 

This study we have used ln(gi/bi) + ln(B/G).  A potential weakness of the weight of evidence approach 

is that the explanatory variable coding is based on the dependent variables, which might cause over fitting on the 

sample data and result in inferior performance when tested out of-sample.The categorization of a continuous 

variable can be chosen so that the default risk in the created categories is as homogeneous as possible. Based on 

similarity of gi/(gi +bi), the individual values of the continuous variable can be grouped (Crook et al.,1992). 

Grouping values together must be done such that the aggregated values appear sufficiently often in the data set 

in order to obtain statistically robust results (Boyle et al., 1992). This aggregation process creates groups for 

each originally continuous variable and is applied for model presented in this paper.  

 

3.1. Regression Model 

A regression model is commonly used to study relationship between multiple independent and 

dependent variables and to determine significant independent variables related to a dependent variable. This 

model is also able to describe the magnitude and direction of independent variables effect on a dependent 

variable (Chen & Hughes, 2004). Basically, there are two common categories of regression models: the linear 

regression model and the logistic regression model. The decision to choose linear regression or logistic 

regression depends on the measurement scale of a dependent variable. If a dependent variable is expressed on an 

interval scale, a linear regression is more appropriate to be used. If a dependent variable is a binary/dichotomous 

data, a logistic regression provides more meaningful results (Agresti, 2002). In this paper, since the dependent 

variable is binary logistic regression is used for scorecard development. 

 

3.1.1 Logistic Regression  

The logistic regression model relates to y and x can be represented mathematically as follows.  

  ((           
 

    (   ∑      
 

 

The unknown regression coefficients  i, which have to be estimated from data, are directly 

interpretable as log-odds ratios, or in terms of exp ( i), as odds ratios. The assumption is the predictor variables 

are related in a linear manner to the log odds {log[p/1-p]} for the outcome of interest. Variables are often 

selected for inclusion in logistic regression models using some form of the backward or forward stepwise 

regression technique. Widely accepted criteria such as the Hosmer-Lemeshow statistic have been developed for 

assessing the goodness of fit for logistic regression models. This method is widely used to develop credit risk 



Model Validation Of A Credit Scorecard Using Bootstrap Method 

www.iosrjournals.org                                                     66 | Page 

scorecards in order to predict the probability of a customer having a good payment habit if a loan is granted. 

Although there are other techniques that could increase the predictive power of the models, the logistic 

regression has two strong features in its favor namely, simplicity on the model developments and ease of 

interpretability.  

Including all variables would make the model unnecessarily large and deter clients when confronted 

with the required number of questions. Therefore authors typically adopt explanatory variable selection. Hand 

and Henley (1997) describe three approaches on this matter. First, expert knowledge can be used to select the 

right variables. Secondly, statistical procedures as the forward and backward selection based on R
2
 can be 

implemented. A combination of the forward and backward approaches, the stepwise approach, also exists. As a 

third approach, Henley and Hand propose to select variables by using a measure which indicates the difference 

between the distributions of the defaulted and non-defaulted loans on that variable. Other authors, such as 

Verstraeten and Van den Poel (2005) also refer to the importance of the Receiver Operating Characteristic 

(ROC) Curve and its summary index Area under the ROC Curve (AUC) in the explanatory variable selection 

process. The ROC Curve gives a graphical representation of the discriminatory power of a scoring system. 

Baesens et al. (2009) propose a heuristic variable selection procedure, based on AUC, which removes in each 

consecutive step the variable which causes the smallest decrease in AUC. Based on an expert decision, the 

tradeoff between strong AUC performance and number of variables is established. In this paper, the stepwise 

selection procedure is used for the variable selection. 

 

3.2 Statistical Model Validation 

In the existing literature (Harrell (2001), Basel Committee on Banking Supervision (2005) and 

Engelmann and Rauhmeier (2006)) models are validated by determining the discrimination and calibration of 

the model. A model’s discrimination is the ability to separate between defaulters and non-defaulters. Calibration 

is the ability of the model to make unbiased estimates of the outcome. We say that a model is well calibrated 

when a fraction of p of the events we predict, with a probability p actually occur. Discrimination and calibration 

both compare the estimated probabilities with the observed frequency of default in the data set. So by measuring 

discrimination and calibration the probability of defaults are validated. However, validation can be more 

rigorous since the parameters of the model ( ̂) can also be validated. We validate the parameters by means of 

reproducibility of research, stability of parameters and choice of functional form. Besides we describe bootstrap 

to validate the probability of defaults as well as the parameters.  

 

3.2.2 Stability of Parameters 

There are two types of stability, stability over time and stability over groups. Often models are intended 

to be used for predictions, but predictions are only valid if parameters are stable over time. In general we are 

often interested in stability over time for a sub vector of the parameter vector  i. A stable model requires well 

determined coefficients with high confidence and similar results on performance characteristics if tested in and 

out of sample. 

In this paper we have used bootstrap approximation method for validating the data. The bootstrap 

approximation is performed using the following steps.  

1. The test statistic LRmax is calculated, where LRmax be the likelihood ratio test with the  highest value.  

2. N bootstrap samples are generated from the original data and the model parameters are estimated under H0.  

3. For each bootstrap sample the test statistic LRmax is calculated, this results in the so-called bootstrap 

distribution.  

4. The p-value is approximated by the fraction of bootstrap LRmax values larger than the LRmax obtained using 

the observed data. 

 

Diebold and Chen (1996) found that the second approximation using the bootstrap distribution 

outperforms the asymptotic distribution; therefore we use the bootstrap approximation in the application. 

 

3.3 Out-of-sample Performance and Bootstrap 

The statistics defined above can be applied to the development set to determine the performance of the 

model. However, we want to determine the performance of the model for future predictions. Using the same 

data both to develop the model and to determine the performance of the model will result in an overestimation 

of the performance for future predictions. If the performance is determined on the development set the estimated 

performance will be too optimistic. To correct for this optimism out-of-sample performance and bootstrap 

methods can be applied. So, we are interested in how well the model performs on a different set than the 

development set. Hence we need two data sets to determine the out-of-sample performance, a development 

sample and a test sample. First, the model is developed based on the development sample. Second, the test 
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sample is used to determine the out-of-sample performance of the model by means of calculating the 

discrimination and calibration of the model. 

In general we can split the original data into a development and a test sample in two ways. This results 

in two types of out-of-sample performance, that is, out-of-sample performance within the time period and out-

of-sample performance outside the time period. To determine the out of-sample performance within the time 

period a subset of the complete dataset is used in model development and hence the development set contains 

observations over T periods. The remaining data also contains observations over T periods and is used to 

determine the out-of-sample performance of the model. Out-of-sample performance outside the time period 

means that the data is split in the following way. The observations in the first T –q periods are used to develop 

the model and the observations in the last q periods are used to determine the out-of-sample performance. 

The disadvantage of out-of-sample performance is that the size of the sample used to develop the 

model is smaller than the original sample of size. The bootstrap method overcomes this problem. The bootstrap 

method first generates N bootstrap samples. A bootstrap sample is a sample with replacement of size N drawn 

from the original sample. On each of these bootstrap samples the model is estimated. The N fitted models are 

applied to the original sample to give N values of a discrimination or calibration measure. The overall accuracy 

is the average of the N measures. This simple bootstrap method turns out not to work very well. Efron and 

Tibshirani (1993) describe an enhanced method that works better than the simple method. It is shown that this 

enhanced method performs better than the simple method (see for example Gong (1986) or Efron (1990)). First 

N bootstrap samples are drawn and N models are estimated using the bootstrap samples. The fitted models are 

applied to the original sample to give N measures. The fitted models are also applied to the bootstrap samples 

(used to fit the model) to give N measures based on the bootstrap samples used to fit the model. The so-called 

optimism is calculated for each bootstrap sample by taking the difference between the measure based on the 

original sample and the measure based on the bootstrap sample. This results in N values of the optimism. The 

overall optimism is the average of the N values of optimism. To determine the discrimination or calibration of 

the final model, the overall optimism is subtracted from the measure calculated on the final model which is 

fitted based on the original sample.  

 

IV. Data And Model Description 
The data for our study is collected from various self-help groups in Vazhayour and Ramanatukara 

panchayath in Kerala, India. A self-help group is village based financial intermediary usually composed of ten 

to twenty local women. Members make small regular savings contribution over a few months until there is 

enough capital in the group to begin lending. Funds may then be lent back to the members or to others in the 

village for any purpose. Our dataset contains customer information such as personal characteristics, disposable 

income, person’s occupation, length of employment, home ownership, characteristics of the current financial 

operation, variables related to the macroeconomic context, and any delays in the payment of a microcredit fee. 

In this scenario, if a customer is not paying continuously three weeks then the account is defined as bad, all 

other accounts are considered as good. To restrict the number of variables we used information value cut of 0.1 

and restricted 15 variables for the analysis.  

The weights of evidence transformed variables are used for the model development. For variable 

selection stepwise logistic regression was used initially. Table 1 shows the development model. Four variables 

(Job, Repaid the loan, Age and income) are significant. 

 

Table 1: Logistic model Parameter estimate 
Parameter DF Estimate Standard 

Error 

 Wald Chi-

square 

Pr > ChiSq 

Intercept 1 2.0686 0.01906 249.7266 <.0001 

JOB 1 1.3432 0.05142 46.8232 0.009 

REPAID_THE_LOAN 1 0.8375 0.0348 135.7923 <.0001 

AGE 1 1.218 0.02815 196.3979 <.0001 

INCOME 1 3.8146 0.0487 114.9394 <.0001 

 Stability of the variable is measured by p-values of coefficients and bootstrap method. Table 2 shows 

how many times the variable is significant in bootstrap sampling out of 1000.  

 

Table 2: Bootstrap method number of time significant 
Variable Number of times 

significant 

JOB 959 

REPAID_THE_LOAN 974 

AGE 982 

INCOME 965 
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For measuring the accuracy we have used concordance. The model concordance is 81.89.  Since the 

weight of evidence procedure is used to develop the model there is a chance to over predict the concordance in 

bootstrap sampling. So we are finding out the unbiased estimate of concordance. Fig.1 shows the histogram of 

the concordance measures of 1000 bootstrap sampling. The range of the concordance is 5.5. The unbiased 

concordance is 81.8. It is very close to model concordance. So it proves we can use bootstrap method for 

accuracy. Similarly one can find the unbiased parameter estimate. For estimating unbiased parameter, we used 

1000 bootstrap estimate of the variable. For example, consider the variable income. We can draw a histogram of 

the estimate of income using 1000 bootstrap and one can find out the unbiased estimate the same way which is 

described above for concordance measures. The unbiased estimate of the variables is shown in Table 3. 

 
Figure 1: Distribution of C-index 

 

Table 3: Unbiased Parameter Estimate 

 Variable Lower limit Upper limit Unbiased estimate 

JOB 1.098 1.432 1.3314 

REPAID_THE_LOAN 0.8525 0.8502 0.8379 

AGE 1.0821 1.2264 1.2059 

INCOME 3.7936 3.8587 3.8013 

 

V. Conclusion 
In this paper we have shown that the bootstrap method can be used for validating a credit scorecard.  

The proposed methodology mainly can be used when the sample size is small. Usually the out of sample size 

data is very small compared to the development data. One can use this method in the out of time data in the 

scorecard development process.  Also we have given a basic idea and how to develop more accurate scorecard 

in this paper.  Although this procedure has only been tested in a credit scorecard model selection context, this 

simple and time saving method could easily be extended to other contexts of nonlinear regression, classification, 

etc., where computation time and complexity play a role.  
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