Abstract: Use of by-pass diodes for each PV module may mitigate the negative effect from partial shading. However, this method alone may still face severe energy efficiency degradation caused by the energy loss due to parasitic effects in the EES elements under variable incoming power from the PV modules. Hence, this paper proposes methods to enhance the PV system efficiency and robustness under partial shading. Here, by-pass diodes are connected parallel to a number of solar cells. Under normal operating conditions, the diodes are blocked compared to the voltage generated by the cells. When shading occurs, the reverse of the voltage was observed in that specific section which enables the by-pass diode in parallel to conduct the current. It was observed that; the current of the un-shaded flows through the by-pass diode and the power/voltage characteristics shows a second local maximum. Also, the shaded cell was only loaded with that fraction of power produced by the un-shaded cells of that section.
[1] V. Quaschning and R. Hanitsch,"Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells," Solar Energy, vol. 56, no. 6, pp. 513–520, 1996.
[2] J. H. R. Enslin, M. S. Wolf, D. B. Snyman, and W. Swiegers, "Integrated photovoltaic maximum power point tracking converter," IEEE Transactions on Industrial Electronics, vol. 44, no. 6, pp. 769–773, 1997.
[3] W. Herrmann, W. Wiesner, and W. Vaassen, "Hot spot investigations on PV modules – new concepts for a test standard and consequences for module design with respect to bypass diodes," in Proceedings of the 26th IEEE Photovoltaic Specialists Conference, pp. 1129–1132, October 1997.
[4] N. D. Kaushika and N. K. Gautam, "Energy yield simulations of interconnected solar PV arrays," IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 127–134, 2003.
[5] M. Klenk, S. Keller, L. Weber et al., "Investigation of the hotspot behaviour and formation in crystalline silicon Power cells, PV in Europe, From PV technology to energy solutions," in Proceedings of the International Conference, pp. 272–275, 2002.
[6] A. Woyte, J. Nijs, and R. Belmans, "Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results," Solar Energy, vol. 74, no. 3, pp. 217–233, 2003.
[7] H. S. Rauschenbach, "Electrical output of shadowed solar arrays," IEEE Transactions on Electron Devices, vol. 18, no. 8, pp. 483–490, 1971.