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Abstract 
In this paper, the extraction of wind power energy is optimized based on a proportional integral (PI) controller 

that uses constants gains, which are calculated after applying several tests to a particular simulated wind 

energy conversion system (WECS). The tool Labview of MATLAB was used for the simulation of the WECS. A 

neural network (NN) is used for estimating the wind speed based on the measurements of torque load and the 

turbine rotational speed. Once the wind speed is determined, the optimal angular speed is calculated using a 

power coefficient (𝐶𝑝) curve and the controller works in reaching the set point. 
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I. INTRODUCTION 
 Wind power technology has developed rapidly in the last two decades, in fact, in 2023, 1 Tw of global 

wind power was reached and it is expected to present from now on, an increment of more than 100 Gw every 

year [1]. As the world seeks to transition to a more sustainable energy future, the importance of wind energy and 

other renewable sources continues to grow [2]. Wind energy conversion systems, have become increasingly 

important for several reasons: in first place wind is a natural, inexhaustible resource. Unlike fossil fuels, wind 

energy does not deplete over time, making it a sustainable option for long-term energy production.  

 Wind energy generation produces no greenhouse gas emissions during operation; this helps mitigate 

climate change by reducing the reliance on fossil fuels, which are significant contributors to global warming and 

air pollution. By harnessing wind energy, countries can reduce their dependence on imported fossil fuels, 

enhancing energy security and reducing vulnerability to energy price fluctuations. Besides, the wind energy 

sector creates jobs in manufacturing, installation, maintenance, and other related industries. It also stimulates 

local economies, especially in rural areas where wind farms are often located. 

 Continuous advancements in wind turbine technology have made wind energy more efficient and cost-

effective. Innovations have led to larger, more efficient turbines that can generate more electricity from the same 

amount of wind. Furthermore, wind energy systems can be deployed on various scales, from small, distributed 

systems for individual homes or businesses to large-scale wind farms. This flexibility allows for diverse 

applications and can help integrate renewable energy into existing power grids.  

 While not without environmental challenges (such as impacts on wildlife and noise), wind energy 

generally has a lower ecological footprint than other energy sources, especially when considering the entire 

lifecycle of energy production. Finally, wind energy can contribute to a more decentralized power generation 

system, reducing the need for large, centralized power plants and enhancing grid resilience [3-5]. 

  Because of its importance, a large number of papers have been published about renewable energy 

technologies and different approaches. Different tools, such as classical analog and digital control and neural 

networks, covering arrays, artificial intelligence, diffuse control, meta-heuristics, genetic, and bio-inspired 

algorithms, have been used for optimization processes, including wind power [6-21]. 

 Working with the 𝐶𝑝  curve (which the manufacturer usually provides) is common in WECS; 

nevertheless, it does not appear as a function, which makes it challenging to handle. There are several 

representations of 𝐶𝑝, which have been presented in different studies [22-24], some of them are worth to be 

considered, since they present a reliable option for determining the optimum rotational speed to maximize wind 

power extraction during the process. 
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II. DYNAMIC MODELING 
 Let us consider (1), which defines the 𝐶𝑝 relationship between the wind power and the extracted power 

by the turbine. 

𝐶𝑝 =
𝑊𝑝

𝑇𝑝
         (1)  

 Where: 𝑊𝑝  is the power of the wind and 𝑇𝑝  is the power extracted by the turbine. Theoretically 

speaking, according to Betz limit, the maximum 𝐶𝑝 value is 
16

27
≈ 0.593, nevertheless, it has been demonstrated 

that in determined controlled circumstances, this value can be surpassed [25]. In this particular case, the function 

for 𝐶𝑝 is provided by (2), while 𝜆 is determined by Eq. (3): 

𝐶𝑝(𝜆) =
1.8𝑒−0.8(𝜆−4)

(1 + 𝑒−0.18(𝜆−4)2
)(1 + 𝑒−1.26(𝜆−4))

                    (2) 

   

𝜆 =
𝜔𝑟𝑅

𝑊𝑠

         (3) 

 Where: 𝜔𝑟 is the rotational angular speed of the turbine (the same than the generator because a direct 

connection was used), R is the turbine radio, and   𝑊𝑠 is the wind speed.  

 

  In the Figure 1, the 𝐶𝑝  curve correspondent to Eq. (2) is presented. As it can be seen, there is a 

relationship between the maximum 𝐶𝑝 and the correspondent value of 𝜆, this is (𝜆𝑜𝑝𝑡 , 𝐶𝑝𝑀𝑎𝑥
) = (4.818,0.485). 

 

 
Fig. 1. 𝑪𝒑 curve dependent on 𝝀 

 

 The 𝐶𝑝 curve provided by the manufacturer (shown in Figure 2) of a particular trademark was adjusted 

to be represented by functional approximations. There are several methods for adjusting curves [26,27], but in 

this case, polynomial approximation by sections was chosen. On the other hand, a NN trained by around 30 

thousand pairs of inputs (𝑇𝐿 , 𝜔𝑟) was used to estimate the wind speed. Once 𝑊𝑠 was determined, the optimum 

𝜔𝑟 was calculated using Eq. (4). Figure (3) shows the general diagram of the process.  

 

𝜔𝑟𝑜𝑝𝑡
=

𝜆𝑜𝑝𝑡𝑊𝑠

𝑅
         (4) 

 

 As it can be seen in Eq. (4), 𝜆𝑜𝑝𝑡  and the turbine ratio are well known, while the wind speed is 

calculated by the NN thorough the measurements of   𝑇𝐿 , 𝜔𝑟. The system was simulated in Simulink. 

 

 
   Fig. 2. Turbine’s 𝐂𝐩 curve generated by sectional polynomial approximation based on the 𝐂𝐩 data 

provided by the manufacturer  
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 The manufacturer’s Cp information is dependent on the wind speed; nevertheless, it is more convenient 

to be presented dependent on 𝜆, so a swept algorithm through the manufacturer’s Cp  data and Eq. (2) was 

performed in order to create a manufacturer’s Cp curve dependent on 𝜆; then, the 𝑇𝐿  𝑎𝑛𝑑 𝜔𝑟 can be calculated 

to train the NN. Once the weights of the NN were calculated, the pairs 𝑇𝐿 , 𝜔𝑟 are the input, and 𝜔𝑟𝑜𝑝𝑡 was 

determined for each pair. 
 

 
Fig. 3. Diagram for calculating optimum 𝝎𝒓 

 

III. NEURAL NETWORK 
The NN utilized one input, one output, and a hidden layer. The data divisions were random, the training 

used was Levenberg-Marquardt, and the performance was mean squared error (MSE). 1000 iterations were 

executed to obtain the best validation epoch, which was 6.058𝑥10−7 and was reached at epoch 1000, as shown 

in Figure 4. On the other hand, Figure 5 shows the Gradient, Mu, and validation checks in everyone of the 1000 

epochs. 

 

 
Fig. 4. Epoch validation performance 

 

 
Fig. 5. Epoch validation performance 
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Finally, Figure 6 presents the NN training regression, with epoch 1000 being the maximum epoch 

reached. Training, test, validation, and the whole performance elements are presented respectively in every 

quadrant of the figure.  

 

 
Fig. 5. Neural network training regression 

 

IV. BLOCKS DIAGRAM 
Figure 5 represents the general block diagram for maximizing the wind power extraction. The wind 

turbine and the permanent magnet synchronous generator (PMSG) are in a direct drive connection. A multilevel 

boost converter (MBC) extracts the energy from the PMSG by commuting the power transistors. The 

proportional integral (PI) controller (which gains were determined thorough different dynamic tests applied to 

the simulated system in Simulink), is responsible for sending the appropriate duty cycle to the MBC to reach the 

optimum turbine angular speed calculated by the NN for every pair 𝑇𝐿 , 𝜔𝑟 .  Finally, a pure resistive load in star 

connection is placed at the final stage of the WECS. 

 

 
Fig. 5. General block diagram 

  

The structure for the PI digital controller is shown in Eq. (5), where 𝑥𝐼 , 𝑥, 𝑢, 𝑟 are the state variable of 

the integrator, state variable of angular speed, the duty cycle input, and the negative feedback of the angular 

speed respectively. C, G and H are matrices of dimension 1𝑥1.   

 

[
𝑥𝐼(𝑘 + 1)

𝑥(𝑘 + 1)
] = [

1
0

𝐶
𝐺

] [
𝑥𝐼(𝑘)

𝑥(𝑘)
] + [

0
𝐻

] 𝑢(𝑘) − [
1
0

] 𝑟(𝑘)                (5) 

 

V. RESULTS 
In order to verify the performance of the simulated WECS, 20 different wind speeds were estimated by 

the NN and then sent to the PI controller. Every 18 seconds wind speed variations were programmed for the 

tests.  As can be seen in Figure 6, the optimum angular speed was reached approximately in five seconds in 

every interval. In Figure 7, the PI controller performance can be verified regarding the maximum theoretical 

wind power extracted. The purple lines represent optimum theoretical values, while the orange lines represent 

the dynamic changes of the variables 𝜔𝑟 and wind power extracted. Table 1 shows the different wind speeds 

estimated by the NN to test the PI controller. 
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Fig. 6. Rotor speed behavior 

 

 
Fig. 7. Wind power extracted behavior 

 

Table 1. Wind speeds estimated by the NN for verifying the PI controller performance 

Interval(s) 
Wind speed 

m/s 
Interval(s) 

Wind speed 
m/s 

Interval(s) 
Wind speed 

m/s 
Interval(s) 

Wind speed 
m/s 

0-18 5.03 90-108 12.01 180-198 19.32 270-288 17.19 

18-36 7.05 108-126 15.07 198-216 15.47 288-306 6.49 

36-54 6.53 126-144 12.77 216-234 12.19 306-324 12.33 

54-72 9.26 144-162 8.68 234-252 7.83 324-342 8.6 

72-90 4.53 162-180 11.25 252-270 12.04 342-360 14.4 

 

VI. FINDINGS AND COMMENTS 
The neural network was able to appropriately obtain the different wind speeds for every pair 𝑇𝐿 , 𝜔𝑟, 

while the constant gains obtained by different dynamic tests in the simulated WECS in Simulink allowed the 

system to present a remarkable performance in reaching the optimum rotational speed and, consequently, 

maximum wind power extraction. 

 

VII. CONCLUSION 
 This work used a hybrid PI controller to optimize the wind power extraction. On the one hand, the 

different tests applied to the simulated WECS allowed the linearization of the system without losing dynamic 

enrichment. The results confirmed the controller’s reliability. On the other hand, it isn't easy to measure 

accurately the wind velocity. Nevertheless, the NN presented an excellent performance for estimating the wind 

speed through the pair 𝑇𝐿 , 𝜔𝑟 , which are variables more straightforward to measure. Finally, Eq. (2) allowed us 

to build a correspondence between the manufacturer’s 𝐶𝑝 values and the tip speed ratio 𝜆, hence, it is easy to 

calculate the pair 𝑇𝐿 , 𝜔𝑟  to train the NN. 
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