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Abstract:
Background: Next-generation wireless networks need ultra-low latency and high reliability, which can only be 
achieved by real-time bit error rate (BER) prediction in the next generation of wireless systems based on 
OFDM. Conventional methods reduce multi-dimensional channel states to scalars and lose information, and 
thus perform sub-optimally over dynamic conditions. In this paper, there is a proposal of a new online ensemble 
model that integrates Adaptive Random Forests (ARF) and Online Support Vector Regression (OSVR) to 
streamline the prediction of the BER. The framework manages concept drift by using dynamic tree management 
and is computationally efficient through adaptive support vector pruning, has theoretical convergence, and 
regret of  
Methods: The proposed ARF-OSVR is compared with four baselines, namely, XGBoost-RF, Deep LSTM-BER, 
ResNet-OFDM, and Transformer-AMC. With extensive validation of IEEE 802.11a specifications over AWGN, 
Rayleigh, and Rician fading channels, it is proven to be of superior performance to four state-of-the-art 
approaches. 
Results: A demonstration of robust performance is shown over a distance of 120 km/h at both AWGN, Rayleigh, 
and Rician channels, a variety of modulation schemes (QPSK, 16-QAM, 64-QAM), and a variety of mobility 
schemes of up to 120 km/h. Findings indicate a 27.1% and 15.7% increase in MAE and RMSE, respectively, a 
correlation of above 0.93, and a latency of less than 2ms (1.9 ms). The statistical analysis promotes the 
significance (p < 0.001, Wilcoxon signed-rank test) and 95% intervals. 
Conclusion: It is convenient to implement the proposed framework in 5G/6G networks in real-time to support 
adaptive modulation, resource allocation, and ultra-reliable low-latency communications, and it is superior to 
the current ML and DL framework.
Key Word: OFDM systems, bit error rate prediction, online ensemble learning, adaptive random forests, 
support vector regression, concept drift, wireless communications, machine learning.
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I. Introduction
Next-generation wireless networks need ultra-low latency and high reliability, which can only be 

achieved by real-time bit error rate (BER) prediction in the next generation of wireless systems based on 
OFDM. Conventional EESM methods reduce multi-dimensional channel states to scalars and lose information, 
and thus perform sub-optimally over dynamic conditions. In this paper, there is a proposal of a new online 
ensemble model that integrates Adaptive Random Forests (ARF) and Online Support Vector Regression 
(OSVR) to streamline the prediction of the BER. The framework manages concept drift by using dynamic tree 
management and is computationally efficient through adaptive support vector pruning, has theoretical 
convergence, and regret of  The proposed ARF-OSVR is compared with four baselines, namely, XGBoost-RF, 
Deep LSTM-BER, ResNet-OFDM, and Transformer-AMC With extensive validation of IEEE 802.11a 
specifications over AWGN, Rayleigh, and Rician fading channels, it is proven to be of superior performance to 
four state-of-the-art approaches. A demonstration of robust performance is shown over a distance of 120 km/h 
at both AWGN, Rayleigh, and Rician channels, a variety of modulation schemes (QPSK, 16-QAM, 64-QAM), 
and a variety of mobility schemes of up to 120 km/h. Findings indicate a 27.1% and 15.7% increase in MAE 
and RMSE, respectively, a correlation of above 0.93, and a latency of less than 2ms (1.9 ms). The statistical 
analysis promotes the significance (p < 0.001, Wilcoxon signed-rank test) and 95% intervals. It is convenient to 
implement the proposed framework in 5G/6G networks in real-time to support adaptive modulation, resource 
allocation, and ultra-reliable low-latency communications, and it is superior to the current ML and DL 
frameworks. The increasing wireless communication is necessitated by the fact that the fifth-generation (5G) 
and other subsequent networks are coming out with ultra-reliable low-latency communications (URLLC) due to 
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the requirement of the precise real-time assessment of the channel quality [1], [2]. The foundation of modern 
wireless networks (Long Term Evolution (LTE), Wi-Fi, and 5G New Radio) is orthogonal frequency division 
multiplexing (OFDM), which remains very ineffective in ensuring reliable operation in dynamic propagation 
conditions [3], [4]. In this regard, real-time and correct prediction of the bit error rate (BER) has become a vital 
facilitator to adaptive modulation and coding (AMC), link adaptation, and resource allocation techniques 
necessary to address the high latency and reliability demands [5], [6]. The accurate BER prediction is a critical 
factor in the design, performance analysis, and optimization of wireless systems. Specifically, BER forecasts 
can be used to create dynamic coding and modulation rates based on changing channel conditions in rate-
adaptive systems and data link protocols [7]. But in frequency-selective fading channels often experienced in 
practical systems based on the OSCE model, the BER computation given the instantaneous per-subcarrier 
signal-to-noise ratios (SNRs) is computationally intractable, and a range of approximation and prediction 
methods have been developed [8]. Traditional methods are based on the efficient mapping of multi-dimensional 
channel state information to a single effective SNR value through the use of exponential signal-to-noise ratio 
(EESM) [9]. The Chernoff bound-based EESM model compresses the set of per-subcarrier SNRs into a single, 
linearly predictable scalar value. Although efficient, EESM-based techniques have four basic weaknesses: (i) 
loss of information, as correlation patterns across subcarriers that are essential to accurate prediction are lost; 
(ii) parameter  must be optimized over a large space, offline, per modulation and coding scheme (MCS); (iii) 
nonlinear fading profiles are inadequately captured; and (iv) no adaptation to real-time streaming channel 
conditions is possible [10].

Recently, machine learning (ML) has shown very promising prospects in overcoming these drawbacks 
by carrying out wireless communication activities, such as channel estimation [11], automatic modulation 
classification [12], and interference elimination [13]. However, the majority of current ML-based BER 
predictive models have limitations for practical implementation. Deep learning networks like LSTM, ResNet, 
and hybrid networks are highly accurate in prediction, but they require lengthy offline training, a large amount 
of computation, and a huge memory footprint that is unrealistic to run in real-time applications [14]–[16]. 
Furthermore, they usually make assumptions about the channel statistics that are not dynamic and cannot be 
modified due to concept drift in mobile environments [17], [18].

These challenges inspired this work to tackle the research problem of designing a computationally 
efficient, as well as dynamically adaptive to the dynamic wireless environment, real-time BER prediction 
framework. Specifically, we target three unresolved challenges:
1. Information Loss - EESM and associated compression methods do not encode correlation between 

subcarriers, leading to lower prediction of frequency-selective fading channels [19], [20].
2. Concept drift Adaptation - The propagation conditions of most current BER prediction techniques are 

stationary, and the prediction rates of such schemes deteriorate in the presence of time-varying channel 
conditions [21], [22].

3. Latency – State-of-the-art ML models are typically associated with latencies of more than 5 ms, which 
cannot be tolerated by sub-millisecond URLLC demands of 5G and more [23], [24].

This research study will answer the following research questions:
RQ1: Are online ensemble learning systems capable of producing better BER predictions than conventional 
techniques and at real-time computation levels?
RQ2: What can be done to adapt to concept drift with the adaptive mechanisms in time-varying wireless 
channels without degrading the performance of prediction?
RQ3: What are the theoretical guarantees of convergence and optimality of online ensemble BER predictors in 
streaming?

To address these challenges, we propose a novel online ensemble learning framework (ARF-OSVR) 
that synergistically integrates Adaptive Random Forests (ARF) with Online Support Vector Regression 
(OSVR). The suggested framework fills the most crucial gaps in the current BER prediction methods and offers 
a basis for the next-generation adaptive wireless communication systems with strict real-time requirements. The 
main contributions of this article are as follows:
1. Novel Ensemble Architecture: We present ARF-OSVR, a real-time predictive BER framework that 

dynamically responds to changing wireless conditions by implementing drift-aware weighting models [25].
2. Theoretical Foundation: Convergence ensures and regret bounds: guarantees the formal performance of 

learning in the streaming case of O(TlogT).
3. Concept Drift Handling: A proactive drift-detection mechanism is built in to modify ensemble composition 

in channels with rapid changes in order to allow robust performance on mobile channels up to 120 km/h.
4. Experimental Validation: Evaluation under the IEEE 802.11a specifications, a 27.1% decrease in mean 

absolute error and 15.7% decrease in root mean square error was observed over state-of-the-art baselines, and 
2 ms latency was achieved.
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The rest of this paper is structured as follows. Section II provides a study of the related literature on 
BER prediction and online learning in wireless communications. Section III presents the system model and 
problem formulation. Section IV details the proposed ARF-OSVR methodology with theoretical guarantees. 
Section V discusses implementation details as well as computational analysis. Section VI reports experimental 
results. Section VII concludes with directions for future research, which also highlights practical implications as 
well as future directions.

II. Related Works
Early BER prediction algorithms of an OFDM system concentrated on compression-based algorithms 

in which multi-dimensional channel states were mapped to scalar metrics (to provide computational efficiency). 
Conventional useful SINR mapping (EESM) algorithms compress per-subcarrier SINRs to scalar effective 
quantities by using exponential averaging, with modulation and coding-scheme-dependent parameters 
determined offline by large-scale link-level simulations. These are computationally efficient, with the same 
complexity as O(N), but have the drawbacks of irreversible information losses due to compression, constant 
parameter estimates that must be estimated offline in advance during every MCS, and cannot easily capture 
complex inter-subcarrier interactions, and have no mechanism to adapt to time-varying channels. Generalized 
BER evaluation of index modulation-based OFDM systems was done by Abdullahi et al. [1], whereas BER 
probability and capacity limits in deterministic doubly-selective channels were referred to by Dominguez-Bolao 
et al. [4]. Hilario-Tacuri et al. [8] analyzed the BER analysis of NOMA-OFDM 5G networks with non-linear 
high-power amplifiers, and Haque et al. [7] studied the BER of hybrid PAPR reduction methods.

In recent literature, techniques of supervised learning that learn directly from channel state to error 
probability mappings have been discussed. The potential of adaptive learning can be evident in the case of the 
Ay et al. [2] noise-adaptive machine learning framework to optimize user grouping in dynamic IM-OFDMA 
systems. The application of deep learning methods, in particular, has demonstrated potential success, where 
Essai Ali et al. [5] utilize peephole LSTM networks to estimate channel states in an OFDM 5G network, and 
have also proved the ability to model temporal correlations. Zhang et al. [24] have proposed intelligent LSTM 
demodulation of the OFDM-DCSK system, and Salama et al. [18] have evaluated DNN and LSTM nonlinear 
compensators with the improved performance of the DCO-OFDM system. Nonetheless, LSTM architectures are 
computationally expensive (O(H 2 T) when H is the hidden dimension and T is the sequence length) to train, 
take more than hours to converge, and do not have online learning capabilities.

Convolutional and residual network designs have realized the current state-of-the-art accuracy at a high 
cost of computation. Mei et al. [12] integrated Convolutional Recurrent Neural Networks with ResNet into the 
receiver of the OFDM, which enhanced the resistance to impairments in the channel. Bai et al. [3] implemented 
a range and velocity estimation based on ResNet in mmWave OFDM systems. These deep architectures have 
memory footprints of over 30 MB and 4-6 ms latencies. Van Luong et al. [22] showed that deep learning-aided 
optical IM/DD OFDM is similar to RF-OFDM in terms of throughput, whereas Singh and Saha [19] presented a 
survey of machine/deep learning based estimation and detection of diverse channel imperfections.

Transformer-based approaches have become potent features of long-range dependency capturing. 
Kumar and Majhi [11] introduced triple attention-aided Vision Transformers to automatic modulation 
classification in RIS-assisted MIMO-OFDM with system impairments. Sahu [16] designed gated transformer 
structures of AMC. Titouni et al. [21] proposed a hybrid CNN-XGBoost in wireless communication systems. 
Transformer models are effective at capturing complex patterns, but they need larger datasets to pre-train 
effectively (more than 40 MB), substantial memory (40 MB), and inference latency of 6-8 ms.

Ensemble learning methods have been found to enhance the generalization and strength. Mienye and 
Sun [13] conducted a survey of the ensemble learning concepts such as bagging, boosting, and stacking, and 
noted their efficacy to enhance generalization. Jha and Mishra [10] used XGBoost-RF ensembles to determine 
signal integrity of a coherent communication system and showed that these models paired with XGBoost-RF 
yielded 15-20% improvement in accuracy compared to single models. Yu et al. [23] forecasted BER based on 
meta information using random forests. The ensemble extreme learning machine-based equalizers for OFDM 
systems were suggested by Saideh et al. [17]. Nevertheless, such methods usually do not adapt to concept drift 
online, have theoretical convergence insurance, and can be computed in real time. There has been a lack of 
studies that focus on real-time BER prediction in online learning techniques that have found many applications 
in wireless-based applications.

Mirsalari et al. [14] proposed channel estimation of the least squares support vector regression-OFDM 
systems under impulsive noise, and this approach is resistant to outliers but does not offer BER prediction as 
channel estimation. In an online gradient update, Goutay et al. [6] used machine learning for MU-MIMO 
receive processing in OFDM systems and showed that online learning was feasible in wireless scenarios, but 
unlike with error rate prediction, equalization was performed. Jebur et al. [9] designed an effective machine 
learning based channel estimation of an OFDM system. The article by Zhang et al. [25] suggested the support 
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vector regression in the reduction of PAPR in the CO-OFDM systems. Sreelekha et al. [20] performed the 
analysis of BER prediction in the MIMO OFDM systems that employ modified dyadic wavelet transform-based 
channel estimation. Mrabet et al. [15] conducted a survey on applied machine learning applied to optical 
networks based on the OFDM.

Existing approaches face critical deployment challenges: excessive computational complexity (3-7 ms 
latency), offline training demands Monte Carlo-simulated labels, a fixed model without adaptation to concept 
drift, and memory requirements (20-40 MB) too large to run on resource-limited devices, and no theoretical 
claims as to convergence and optimality. The work on online learning in wireless communications is less 
focused on predicting BER and more on channel estimation and equalization, has not theoretically studied 
convergence with wireless-specific concept drift patterns, does not discuss real-time latency limits of URLLC, 
and seldom involves multiple online learners in ensemble frameworks.

Table 1: Comparative Analysis of BER Prediction Methods in Terms of Adaptability, Accuracy, and Latency
Method Info Loss Online 

Adapt
Theory Latency Accuracy Reference

LSTM-based None Offline None 3-5ms +20% [5], [18], [24]
CNN/ResNet None Offline None 4-6ms +22% [3], [12]
Transformer None Offline None 6-8ms +25% [11], [16]

Ensemble 
(XGBoost/RF/ELM)

Low Offline None 2-3ms +18% [10], [13], [17], [23]

Online SVR Moderate Limited None 2-4ms +12% [14], [25]
ML-enhanced CE Low Offline None 2-3ms +15% [6], [9], [19]

ARF-OSVR None Online Convergence + 
Regret

1.9ms +27% Proposed

The paper has identified the trade-offs between traditional, deep learning, and ensemble methods of 
predicting BER, as highlighted in Table 1. The suggested ARF-OSVR solution is more flexible and precise, 
with a low latency; therefore it can be applied in real-time.

The present work fills these gaps with four major contributions: hybrid feature engineering that 
maintains critical channel information and yet retains computational tractability, online ensemble framework to 
combine ARF and OSVR to attain robust performance by diversity of ensembles and adaptability to concept 
drift, theoretical foundations to provide convergence guarantees and regret bounds,  online learning with 
concept drift, and real time performance with a 1.9 ms latency and a 12.4 MB memory footprint to meet 
URLLC specifications with 27.1% improvement on best baselines.

III. System Model And Problem Formulation
OFDM System Model

Figure 1 depicts the system-level architecture, with the viable flow of the input features (channel state, 
modulation type, and Doppler frequency) through the feature extraction, ARF-OSVR blocks, and the output 
layer. The feedback loop will make sure that it dynamically adapts to channel variations in order to estimate 
BER accurately. In this paper, we consider an orthogonal frequency-division multiplexing (OFDM) system that 
uses  subcarriers and works in a time-varying multipath fading environment, which is a common scenario in 5G 
and future wireless networks. OFDM separates a wideband channel into a variety of narrowband orthogonal 
subcarriers, which helps reduce inter-symbol interference (ISI) and offers protection against frequency-selective 
fading, which records variations at instantaneous subcarrier levels.

The transmitted signal on the  subcarrier at time  is given by:
…. (1)

where  is the modulated symbol (e.g., QAM or PSK) for the  subcarrier, and denotes the frequency of 
the  subcarrier, ensuring orthogonality among subcarriers. The exponential term represents the carrier 
modulation in complex baseband form.

After transmission through the wireless channel, the received signal is expressed as:
…. (2)

where  is the complex channel coefficient capturing multipath fading, Doppler shifts, and temporal 
variations, while …. is additive white Gaussian noise (AWGN), modeled as .

The instantaneous signal-to-noise ratio (SNR) for each subcarrier is then computed as:

with  denoting the average symbol energy. This per-subcarrier SNR quantifies real-time channel 
quality and serves as the fundamental feature for BER prediction.
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Figure 1: System Architecture of the Proposed ARF-OSVR Model for BER Prediction

The resulting channel state is represented as a high-dimensional vector:

This formulation, in contrast to traditional SNR-based methods that operate on scalars, retains fine-
grained channel information, giving a more accurate learning-based BER prediction under very dynamic 
conditions. BER prediction of the dynamic wireless channel is based on the OFDM system model. Each 
subcarrier is linked with its instantaneous SNR, and they constitute the high-dimensional channel state  In 
contrast to the scalar SNR compression techniques, this representation conserves variances in subcarriers, which 
are very critical for an effective prediction of BER in realistic fading scenarios. The conceptual framework in 
Figure 2 involves the combination of feature extraction, Adaptive Random Forest (ARF), and Online SVR 
(OSVR). It highlights the adaptive weighting and feedback mechanism that provides the training online, 
concept drift adaptation, and regret minimization.

Problem Statement
Traditional ways of estimating bit error rate (BER) simplify the high-dimensional channel state vector 

to a single effective SNR value:
…. (5)

Even though this scalar compression is computationally appealing, it cannot eliminate finer-grained 
subcarrier-level data. Consequently, these techniques tend to give less than optimal predictions of BER in a 
fading, high mobility user environment, or ultra-reliable low-latency communication (URLLC), where 
capturing instantaneous variations in the channel are very important.

To overcome these limitations, we formulate BER prediction as a real-time supervised learning problem:
 …. (6)

Here,  refers to a collection of time-varying parameters to fit dynamic wireless-induced conditions, 
while  represents a non-linear mapping from the channel state vector to the instantaneous BER. The primary 
objective is to design a predictive model that not only captures the complex non-linear dependencies between 
subcarrier SNRs and BER but also ensures responsiveness under stringent latency constraints.

Figure 2: Proposed ARF-OSVR Framework for Real-Time BER Prediction in OFDM Systems
In particular, the system has to provide credible BER estimates with a latency of 2 ms, thus meeting 

the needs of URLLC and allowing the robustness of adaptive modulation, coding, and link adaptation in next-
generation wireless networks.
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In contrast to the traditional methods, which shrink the wireless channel to a single scalar measure, the 
proposed method maintains complete information at the subcarrier level and incorporates adaptive online 
learning. The design option improves stability and makes the framework especially suitable in practice in 5G 
and new 6G scenarios, where non-stationary and heterogeneous channel dynamics conditions dominate:
 …. (7)

where  represents the binary error event (with  for decoding error and for successful reception), Γ(t) 
denotes the instantaneous channel state information at the subcarrier level, and  encapsulates additional system 
parameters. To approximate this conditional expectation, we employ a hybrid ensemble predictor that combines 
two complementary online learners. The ensemble output is expressed as:
)…. (8)

Here, ​ denotes the prediction obtained from Adaptive Random Forests, which are capable of detecting 
and adapting to concept drift in real time. In contrast, )  corresponds to the output of Online Support Vector 
Regression, which models the highly non-linear relationship between SNR variations and BER. The adaptive 
weight  regulates the relative influence of the two predictors and is updated based on instantaneous prediction 
error, which ensures that the ensemble dynamically prioritizes the most reliable learner under prevailing 
channel conditions.

This formulation is not only theoretically sound, as it relates BER prediction to a conditional 
expectation model, but it is also more useful in practice as it integrates drift-resistant and non-linear predictors 
into a single online learning model.

In the proposed framework, the adaptive weight update is determined by a stochastic gradient rule:

η denotes the learning rate. According to this mechanism, the ensemble is dynamically assigned a 
greater weight to those predictors that exhibit good performance at a specific time, only to guarantee the ability 
to withstand variable channel conditions. It is especially very important that Adaptive Random Forests (ARF) 
and Online Support Vector Regression (OSVR) have been integrated to allow addressing concept drift and non-
linear channel mapping simultaneously. Such a combination represents a novel contribution to the domain of bit 
error rate (BER) prediction.

This work presents a novel framework for real-time BER prediction in OFDM systems that preserve 
per-subcarrier SNR values, which avoids the information loss of traditional methods. The ARF–OSVR 
ensemble combines online adaptation with non-linear regression, while an adaptive weighting mechanism 
prioritizes the best-performing predictor under changing channel conditions as well. The framework also 
provides theoretical guarantees of ensemble convergence and bounded regret, rarely addressed in prior work, 
and achieves sub-2 ms latency, making it suitable for 5G/6G real-time deployment. On the whole, it provides an 
end-to-end solution to precise, low-latency BER prediction in dynamic wireless conditions.

IV. BER Prediction Methodology
Proposed Framework

We suggest an online ensemble learning model that integrates the Adaptive Random Forests (ARF) 
and Online Support Vector Regression (OSVR) to address the limitations of traditional estimation methods of 
BER. This hybrid design empowers the complementary design of both designs: ARF offers resilience to concept 
drift and dynamically adapts to streaming data, whereas OSVR offers the non-linear mapping between 
subcarrier-level SNRs and BER.

Formally, we restate the BER prediction as a conditional expectation problem defined over the full channel 
state:

where denotes the binary error event (with  for decoding error and for correct reception), , represents 
the instantaneous channel state vector across all subcarriers, and   corresponds to the set of time-varying model 
parameters, which are updated online to track channel dynamics.

Unlike conventional scalar SNR compression or the LUT-based method, such a formulation guarantees 
lossless channel representation and is also operationally real-time. The proposed ARF-OSVR framework 
records fine-grained temporal and frequency variations in the channels of the OFDM by exploiting directly the 
high-dimensional structure of Γ (t). In addition, in contrast to offline Monte Carlo simulation techniques, the 
proposed solution is naturally adaptive and scalable; therefore, it is applicable in 5G/6G ultra-reliable low-
latency communication (URLLC) systems where latency budgets are extremely stringent.

It illustrates that we construct a 52-dimensional feature vector x(t) R52, which is classified in 
statistical, spectral, temporal, wavelet, and information-theoretic domains. Each feature group represents 
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distinct channel properties, which are guaranteed to provide a complete representation of channel characteristics 
to ensure accurate prediction of the BER:

In order to capture the complete statistical and structural characteristics of the wireless channel, a 
comprehensive 52-dimensional feature set is constructed.

The first type comprises statistical features (4 dimensions), and they characterize the distribution of the 
received signal-to-noise ratio (SNR) by using the first four moments. The mean is given by:

While the variance is expressed as:

Adaptive Random Forest (ARF) Component
The Adaptive Random Forest (ARF) module employs an ensemble architecture consisting of MMM 

decision trees, each dynamically weighted according to its predictive performance. The weight of the tree at 
time  is defined as

where  denotes the prediction of the  tree at time ,  is the corresponding ground truth, and www is the 
evaluation window size. This weighting scheme ensures that trees with consistently lower error maintain higher 
influence in the ensemble.

The overall ensemble prediction is obtained as a weighted aggregation of individual tree outputs:

where  represents the prediction of the  tree for input 
Dynamic tree management is implemented through classical random forest principles: bootstrap 

sampling at the data level, random feature selection with  features per split, maximum tree depth limited to 15, 
and a minimum of 10 samples per leaf node.

To handle concept drift, the algorithm continuously monitors tree performance. If a tree’s weight falls 
below a threshold defined as

It is replaced by a newly trained tree using the most recent 500 samples, thereby ensuring adaptability 
to evolving data distributions as well.

The computational complexity of the ARF component is

Where  is the number of trees,  is the feature dimension, and is the average number of leaf nodes per 
tree.

Figure 3: ARF Component Workflow
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Figure 3 depicts the workflow of the Adaptive Random Forest (ARF) component, where multiple 
decision trees operate in parallel with dynamically updated weights. The ensemble adapts to streaming data by 
leveraging error-based weighting and drift detection, enabling robust performance under varying channel 
conditions.

Online Support Vector Regression (OSVR) Component
The OSVR module performs non-linear regression to predict the target variable based on input features 

. The regression function is defined as

where  is the Radial Basis Function (RBF) kernel,  are the support vector coefficients,  is the bias term, 
and  is the current number of support vectors.

Online updates are performed using stochastic gradient descent (SGD) whenever the ϵ\epsilonϵ-
insensitive loss criterion is exceeded, ensuring continuous adaptation to streaming data. To maintain 
computational efficiency, support vectors are pruned if their age exceeds 1000 frames or if their coefficient 
satisfies . The resulting computational complexity of OSVR is

where  is the number of support vectors and  is the input feature dimension.

Figure 4: Cross-functional layout
Theoretical Analysis
The ARF-OSVR framework is theoretically robust under non-stationary channel conditions.

Convergence (Theorem 1): Under smooth, bounded, and Lipschitz-continuous assumptions, the mean-
square error of BER prediction converges asymptotically:

where  ​ is the Lipschitz constant and ​ represents residual variance due to online updates.
Regret Bound (Lemma 1): The cumulative regret over T time steps is bounded as

It is stated that the ensemble can adjust effectively to the changing channel conditions and manage 
long-term prediction error. Such theoretical assurances emphasize the strength of the ARF-OSVR method, 
compared to traditional deep learning or lookup table (LUT)-based models, which can break down in dynamic 
and non-stationary wireless conditions.

Pseudocode
Algorithm 1: ARF-OSVR Real-Time BER Prediction
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V. Experimental Setup And Design
Three representative wireless environments were experimented to capture a variety of channel 

dynamics. The initial one was a static indoor stationary laboratory environment with a 20 MHz bandwidth and a 
2.4 GHz frequency. The second scenario was pedestrian mobility along a campus path at 3-5km/h, and scenario 
three was controlled vehicular movement at 20km/h within a parking area. In both cases, 500 OFDM frames 
were modulated with 16-QAM to achieve adequate testing of BER prediction results. Hardware results revealed 
that MAE (~20% higher than simulated) was higher than with simulation because of non-idealities such as 
imperfect synchronization and carrier frequency offset, but correlation was still well above 0.91 in all 
conditions, and the real-time latency was held close to 2.3 ms/frame.
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The proposed ARF-OSVR framework simulation study was aimed at testing real-time BER prediction 
in various wireless environments. Key simulation parameters given as Table 2:

Table 2: Simulation Parameters
Parameter Value / Setting Description

Training Frames 50,000 OFDM frames Used to train the ARF-OSVR model
Test Frames 10,000 OFDM frames Used for independent evaluation of prediction accuracy
SNR Range 5 – 25 dB Covers low to high signal quality scenarios

Channel Models AWGN, Rayleigh, 
Rician (K = 10 dB)

Represents different fading environments

Mobility Scenarios 3 km/h (pedestrian) – 
120 km/h (vehicular)

Evaluates Doppler and mobility effects

Modulation Schemes QPSK, 16-QAM, 64-
QAM

Captures practical wireless system variations

Feature Vector 
Dimension

52 Combines statistical, spectral, temporal, channel-specific, and 
historical BER features

ARF Trees (M) 10 Optimized for MAE-RMSE trade-off
OSVR Kernel Width 

(σ)
2.0 Minimizes RMSE

ARF Replacement 
Threshold (τ)

0.1 Balances adaptability and stability

OSVR Tolerance (ε) 0.01 Prevents overfitting

The framework’s performance was evaluated using multiple quantitative and operational metrics, 
reflecting accuracy, robustness, and real-time feasibility as provided in Table 3:

Table 3: Main Observation Attributes
Attribute Description

BER Prediction Accuracy Evaluated via MAE, RMSE, Pearson correlation (ρ), MAPE; tight alignment between predicted 
and actual BER observed across all SNRs

Convergence Training error decreased exponentially, reaching steady-state within ~200 samples
Robustness Consistent performance across AWGN, Rayleigh, and Rician channels; minor degradation at 

high velocities demonstrates drift-awareness
Real-Time Latency 1.9 ms per frame on average; suitable for embedded implementations
Memory Footprint 12.4 MB; compatible with real-time deployment

Component Contribution Ablation study showed spectral features contributed most; ARF + OSVR (drift-aware β) 
provided best performance

Impact of Imperfect CSI Errors up to 10% slightly increased MAE (12% increase), highlighting robustness with CSI 
quality metrics

Drift Detection Failure Modes False negatives (3.2%) and false positives (1.8%) resulted in temporary MAE spikes, 
recoverable within 50–120 frames

Ground Truth Label Generation for Online Learning
The proposed Adaptive Random Forest-Online Support Vector Regression (ARF-OSVR) model with 

ground truth label generation on the training of online learning was implemented in two stages: offline 
simulation for initial model training, and deployment for real-time learning. During the simulation in the offline 
phase, 5000 of the OFDM frames were produced at SNR values between 0 and 30 dB. The random bits were 
sent, and the current BER was estimated by counting errors on each frame. Based on the channel state, a 52-
dimensional multi-scale feature differentiation was obtained in each frame to compose a labeled dataset, which 
was employed to initialize the ARF and OSVR models:

During online deployment, the framework relies on continuous acquisition of ground truth labels. Two 
mechanisms were employed: CRC-based feedback serves as the primary source, where each OFDM frame 
contains CRC bits, and the receiver decodes the frame to estimate BER by counting detected errors:

This estimate is available within single frame duration (~100 μs for 802.11a) but can be noisy, 
particularly at low BER levels as well.

The HARQ acknowledgment feedback can be considered as a secondary source that inherently gives 
coarse binary labels reflecting the ACK/NACK signals. CRC feedback is mixed with this crude supervision to 
fine-tune the BER estimate. In order to reduce noise, an exponential moving average is used:

CRC and HARQ feedback are fused to refine predictions, and label smoothing is introduced using an 
exponential moving average, which removes the noise effect and ensures stable online learning.

OFDM Simulation and Experimental Setup
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The OFDM system considered for evaluation consists of multiple subcarriers and symbols per frame, 
which supports modulation schemes such as QPSK, 16-QAM, and 64-QAM. It is transmitted in a block-fading 
Rayleigh channel with additive white Gaussian noise. At the receiver, the OFDM symbols are equalized and 
demodulated to reconstruct the transmitted bits  which is mapped to OFDM symbols and transmitted over the 
channel, and the instantaneous BER per frame is computed using an indicator function. The received signal 
for the  OFDM symbol is:

Where the frequency-domain, is the channel vector and  denotes element-wise multiplication. The 
receiver equalizes and demodulates to reconstruct, and the instantaneous BER per frame is:

The simulations were performed with MATLAB R2023a on an Intel i7 CPU and 32GB of RAM, and 
based on different conditions of the channel (AWGN, Rayleigh, Rician), as well as mobility (pedestrian, urban, 
and vehicular) conditions. Real-time validation was optional and conducted with the USRP B210 SDRs in the 
indoor lab, campus pedestrian, and controlled vehicular scenarios. Frame synchronization was achieved by 
pilot-based channel estimation.

Dataset Generation and Process
The total number of generated OFDM frames was 50,000. These included 40,000 training frames, 

5,000 frames of which were used to train the ARF and OSVR models in the first batch, and the rest of the 
40,000 in online mode. The hyperparameter tuning was done on a validation set of 5,000 frames, and a test set 
of 10,000 frames was left as a final evaluation. The dataset distribution took into consideration uniform SNR 
sampling, a combination of a variety of channel types (40% AWGN, 30% Rayleigh, 30% Rician), and different 
mobility conditions (50% static, 30% pedestrian, 20% vehicular). QPSK, 16-QAM, and 64-QAM equally 
shared their modulation schemes. To ensure that the performance of the MAE remained consistent across data 
partitions, cross-validation was performed to confirm that the variance of MAE stood below 0.0002.

First, feature engineering is a very important part of the ARF-OSVR framework. Multi-scale feature 
vectors (a 52-dimensional feature) of the statistics, spectral, temporal, wavelet, and information-theoretic 
features are used to represent each OFDM frame. A multi-scale input feature of 52 dimensions: The input 
feature characterizes every frame of the OFDM:

Statistical characteristics are the mean, variance, skewness, and kurtosis of subcarrier SNRs. Spectral 
features are used to record power spectral density and inter-subcarrier correlations, and they can be used to 
record short and long-term SNR trends and Doppler spread. The wavelet decomposition offers multi-scale 
channel state-representation, and information-theoretic measures, like that of mutual information and entropy, 
serve to enrich features. Online prediction accuracy is enhanced by the inclusion of historical BER values and 
error in prediction.

The second feature of the ARF ensemble is that it is composed of a series of decision trees, whose 
adaptive weights are changed by exponentially weighted new errors. Underperforming trees are automatically 
pruned, and OSVR dynamically replaces its support vectors with those discovered using stochastic gradient 
descent when prediction errors exceed an ε-insensitive threshold, discarding old or insignificant vectors. A 
three-tier drift detection mechanism is used to address concept drift, with the concept drift classified as mild, 
moderate, and severe, and an adaptation to the weight, replacement of the tree, or an entire ensemble is invoked. 
The prediction ensemble is calculated by combining ARF and OSVR outputs in a weighted fashion, the weight 
being dynamically set according to the size of the drift, variation in the performance between ARF and OSVR, 
and channel specifics.

As a result, analyzing computational complexity reveals that ARF needs  operations per frame, while 
OSVR requires, which results in an overall linear complexity with respect to feature dimensionality. This 
guarantees that the framework is appropriate for real-time usage, with the latency of simulation of about 1.9 ms 
per frame and memory consumption of about 12.4 MB.

Performance evaluation is based on MAE between predicted and true BER, correlation, and 
convergence rate. Hardware validation indicates slightly higher MAE (~20%) compared to simulation due to 
non-idealities such as synchronization errors and carrier frequency offsets, yet the correlation remains above 
0.91 across all scenarios, and latency remains acceptable (~2.3 ms). Compared to state-of-the-art models such as 
XGBoost-RF, Deep LSTM-BER, ResNet-OFDM, and Transformer-AMC, the ARF-OSVR framework achieves 
superior accuracy, low latency, memory efficiency, and real-time feasibility.

VI. Result Analysis
Performance Metrics
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The framework was evaluated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 
Pearson correlation coefficient (ρ), Mean Absolute Percentage Error (MAPE), real-time prediction accuracy, 
latency, and memory footprint.

Mean Absolute Error (MAE) measures the average magnitude of prediction errors:

Root Mean Square Error (RMSE) quantifies the square root of the average squared differences 
between predicted and actual values:

Pearson Correlation Coefficient (ρ\rhoρ) evaluates the linear correlation between predicted and actual BER:

Figure 5: MAE Comparison Figure 6: MAPE Comparison

Figure 7: RMSE Comparison

Mean Absolute Percentage Error (MAPE) measures relative prediction error as a percentage:

Hyperparameter sensitivity and grid search optimization confirmed that number of ARF trees  and 
OSVR kernel width  were most critical, while ARF replacement threshold  and OSVR tolerance  were relatively 
robust. Interaction effects revealed that higher M could partially compensate for suboptimal  The optimal 
hyperparameters were:

Table 4: Optimal Hyperparameters
Parameter Candidate Values Optimal Rationale

Number of ARF Trees {5, 10, 15, 20} 10 Best MAE-RMSE trade-off
OSVR Kernel Width {1.0, 2.0, 3.0, 5.0} 2.0 Minimizes RMSE

ARF Replacement Threshold {0.05, 0.1, 0.15, 0.2} 0.1 Balance adaptability/stability
OSVR Tolerance {0.005, 0.01, 0.02} 0.01 Prevents overfitting

Comparative Analysis
Across 10,000 test frames, the ARF-OSVR ensemble significantly outperformed state-of-the-art 

baselines, as shown in Table 5:

Table 5: Performance Metrics
Method MAE 

(×10 ³)
RMSE 
(×10 ³)

Ρ MAPE (%) Latency (ms) Memory (MB)

ARF-OSVR (Proposed) 4.30 9.10 0.938 8.7 1.9 12.4
XGBoost-RF 5.90 10.80 0.920 10.6 2.3 9.2
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Deep LSTM-BER 6.80 12.60 0.913 12.1 3.1 19.7
ResNet-OFDM 7.60 14.10 0.905 13.8 4.5 33.2

Transformer-AMC 8.20 14.90 0.898 14.9 6.7 41.8

Figure 8: Baselines vs Proposed Model

As figure 5, 6, 7, and 8 shows, the ARF-OSVR (Proposed) model achieves the best performance with 
MAE = 4.30×10 ³, RMSE = 9.10×10 ³, ρ = 0.938, MAPE = 8.7%, Latency = 1.9 ms, and Memory = 12.4 
MB, which indicates very high accuracy, strong correlation, and low computational cost. XGBoost-RF shows 
slightly lower performance with MAE = 5.90×10 ³, RMSE = 10.80×10 ³, ρ = 0.920, MAPE = 10.6%, Latency 
= 2.3 ms, and Memory = 9.2 MB. Deep LSTM-BER has MAE = 6.80×10 ³, RMSE = 12.60×10 ³, ρ = 0.913, 
MAPE = 12.1%, Latency = 3.1 ms, and Memory = 19.7 MB, showing higher errors and longer processing time. 
ResNet-OFDM gives MAE = 7.60×10 ³, RMSE = 14.10×10 ³, ρ = 0.905, MAPE = 13.8%, Latency = 4.5 ms, 
and Memory = 33.2 MB, while Transformer-AMC performs worst with MAE = 8.20×10 ³, RMSE = 
14.90×10 ³, ρ = 0.898, MAPE = 14.9%, Latency = 6.7 ms, and Memory = 41.8 MB. This demonstrates that 
ARF-OSVR is superior to the other techniques in terms of accuracy, speed, and memory efficiency.

Wilcoxon signed-rank tests confirmed statistical significance (p < 0.001) for all comparisons, with 
large effect sizes (Cohen’s d > 1.8) against each baseline. ARF-OSVR achieved a 27.1% lower MAE and 
15.7% lower RMSE compared to XGBoost-RF.

BER Prediction Accuracy
Across SNR levels, the ARF-OSVR framework achieved high prediction accuracy, as summarized in Table 6:

Table 6: Accuracy of BER Prediction
SNR (dB) MSE 

(×10 ³)
ρ Accuracy (%)

0 5.1 0.97 92
5 2.8 0.98 94
10 1.5 0.99 96
15 0.8 0.99 97

Scatter plots and error histograms confirm tight alignment between predicted and actual BER, with 
correlation coefficients exceeding 0.98 across all SNRs.

Convergence and Robustness
Training error decreased exponentially, which reaches steady state within 200 samples. Channel-

specific performance remained very consistent across AWGN, Rayleigh, as well as Rician environments as 
given in Table 7, and Figure 11:

Table 7:  Channel-specific Performance
Channel MAE RMSE Notes
AWGN 0.0042 0.0089 Baseline, no fading
Rayleigh 0.0045 0.0093 NLOS urban environment
Rician 0.0044 0.0090 LOS suburban
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Figure 9: Channel-Specific Performance Comparison (MAE)

Figure 10: Model Convergence Plot: Training Error vs Samples
Figure 10 shows the model convergence by plotting the training error against the number of samples. 

It reveals that the error reduces gradually with an increase in the number of training data, which is a sign of very 
successful learning and stabilization of the model.

Mobility impact analysis (Table 8) indicates minor degradation at higher speeds, which demonstrates 
the drift-aware mechanism’s robustness.

Table 8: Mobility Impact Analysis
Velocity MAE Notes
3 km/h 0.0041 Pedestrian, quasi-static
30 km/h 0.0045 Urban, moderate Doppler
120 km/h 0.0049 Vehicular, high Doppler

Real-Time Performance and Computational Cost
Feature extraction, ARF, OSVR, and ensemble weighting were profiled for 1,000 frames:
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Figure 11: Feature Extraction and Processing Time Profilling

Figure 11 is an overview of the execution time of every operation within the proposed ARF-OSVR 
framework. The extraction of features consumes 420 μs in time, which is 22.1% of the overall processing time. 
Most time-consuming steps are ARF and OSVR prediction, with 41.1% and 26.8% contribution, respectively. 
Ensemble weighting and updates take very little time, and they comprise only 10% of the entire latency. The 
memory footprint (12.4 MB) and total latency (1.9 ms) of the framework render it suitable for real-time and 
embedded applications. The latency can be achieved on a sub-millisecond level by potential optimization with 
C++, SIMD vectorization, or FPGA acceleration.

VII. Conclusion
The paper introduces ARF-OSVR, a new online ensemble-based framework for predicting the real-

time BER of OFDM systems. The proposed method outperforms state-of-the-art baselines by 27.1% MAE and 
15.7% RMSE with 1.9 ms latency, which is appropriate for URLLC applications. Among the contributions are: 
(1) feature engineering (preservation of channel information), (2) online learning (removal of offline training 
overhead), (3) theoretical convergence guarantees and O(TlogT) regret bounds, (4) three-tier concept drift 
adaptation in mobile environments, as well as (5) extensive experimental validation under a wide range of 
conditions as well. The framework addresses serious drawbacks of conventional methods (loss of information), 
the state-of-the-art deep learning methods (offline training, high latency, no drift support), and offers a viable 
solution to the next-generation 5G/6G wireless networks that demand adaptive modulation, resource 
distribution, and ultra-reliable low-latency communications. The proposed paper proposes a new online 
ensemble prediction framework for the BER of an OFDM system in real time. The ARF-OSVR model that has 
been proposed is based on the combination of Adaptive random Forests and Online Support Vector Regression 
to ensure high prediction accuracy, while keeping the computational cost that can be implemented in real-time. 
The proposed framework also presents a new ensemble structure as a highly valuable contribution, a 
dynamically weighted combination of ARF and OSVR components. It enables learning over the internet, 
whereby it is possible to constantly adapt to varying conditions of the channels without the necessity of 
retraining offline. Extensive testing on four state-of-the-art algorithms reveals a consistent method of achieving 
better performance, with 27.1% reduced MAE and 15.7% reduced RMSE. Having a latency of less than 2ms 
and a moderate memory usage, the framework can be deployed in real-life and demonstrates stability in a 
variety of channel models, modulation schemes, and mobility conditions.

Despite these strengths, there some limitations. The existing implementation uses the assumption of 
perfect channel state information and is targeted at single-antenna systems, which restricts its application to 
MIMO-OFDM and situations where there is an error in the estimation of the channel state information. The 
solution proposed applies vital constraints of current techniques of BER prediction and still provides the 
computational capabilities demanded by real-time wireless communication systems. The work is a basis for 
more sophisticated link adaptation algorithms and will aid in the creation of more efficient and reliable wireless 
communication systems. The ensemble approach introduces higher computational overhead compared to 
lightweight methods, and its efficiency relies on the appropriate choice of hyperparameters as well. Channel 
model dependencies thoroughly require representative training data to be optimally deployed.
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Future research might involve generalizing the framework to imperfect CSI environments with 
denoising autoencoders, adaptation to massive MIMO and mmWave systems, implementation of transformer-
based architectures to achieve higher pattern recognition, federated learning to coordinate across cells, and 
hardware acceleration to sub-millisecond latencies with ASIC/FPGA. To sum up, the ARF-OSVR framework 
presents a higher accuracy, computational efficiency, scalability, and practical deployment feasibility. The 
overall findings, convergence tests, and strength tests indicate its effectiveness in real-time wireless 
communication applications, and the limitations established present future research and optimization 
opportunities.
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