
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 27, Issue 5, Ser. 4 (Sept. – Oct. 2025), PP 31-40

www.iosrjournals.org

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 31 | Page

Adaptive Scaffolding In Silicon: The Efficacy And

Pedagogical Framework Of AI Tutors In K-12 Coding

Education

Shaunit Bajoria

Abstract
Coding and computational thinking have become a worldwide concern in the K-12 education curriculum. The

conventional teacher-led pedagogical designs, however, have difficulty supporting the varying learning speed,

thought processes, and motivation levels of young learners who have to grapple with the sophisticated

programming concepts in the Scratch, Python, and JavaScript languages. This places a very big difference

between what the education aims and what the students achieve, with problems in debugging, declining interest,

and failure to solve problems independently. The given problem is discussed in the paper, where a detailed

framework of Artificial Intelligence (AI) Tutors is proposed and analyzed that will complement the education in

the field of coding. Using a conceptual analysis and framework development approach, the present study will

compare the traditional, one-to-many approach of teaching to an AI-Tutor-Augmented model. We present the

Adaptive Pedagogical Scaffolding (APS) system, a conceptual framework of an effective AI tutor, and it consists

of five main modules, a Learner Profiling Module, a Personalized Pacing Engine, a Real-Time Feedback

Generator, a Socratic Hinting System, and a Motivational Engine. The discussion reveals how the framework has

the potential to bring about important pedagogical benefits, such as dynamically personalized learning

trajectories, real-time and context-sensitive feedback and development of metacognitive debugging capabilities.

AI tutors will be able to achieve a higher level of engagement, retention, and autonomy in problem-solving by

offering adaptive scaffolding based on the Zone of Proximal Development of each student. The paper also

provides the implications of this shift which are critical as it does not replace human educators, but serves as an

effective tool of collaboration that enhances the capacity of an instructor. It also critically assesses the constraints

and ethical implications such as the dangers of over-scaffolding as well as the task of reproducing the support of

human affectiveness. The paper ends by concluding on the potential transformations of AI tutors in order to

develop a more equitable, engaging and effective coding education ecosystem to enable more innovators to

emerge in the coming generation.

--- ----------

Date of Submission: 01-10-2025 Date of Acceptance: 11-10-2025

--- ----------

I. Introduction
Background: The Imperative of Computational Literacy in Modern Education

In the 21 st century, the application of computational thinking has gone beyond computer science and

has become one of the basic literacies just like reading, writing, and arithmetic (Wing, 2006). Decomposing

issues, identifying patterns, programming, and abstract thinking are also essential skill sets of the ever-digitized

and automated world. In realising this, learning institutions across the globe have made it a point to include

programming, or coding, in K-12 curriculum. The creation of easy to access and interesting programming

environments especially tailored to the young learners supports this movement. Visual block-based languages,

such as Scratch created at the MIT Media Lab, offer a simple platform on which children are taught about

programming logic without the daunting obstacle of syntax complexity. As they progress, they move to text based

languages like python, which has clean syntax and is flexible and JavaScript which is the language of the web

that enables them to create interactive and dynamic projects (Resnick et al., 2009). This educational path, the

visual blocks leading to the functional scripts, is aimed at developing not only technical skills but also

imagination, rational thinking and ability to face complicated problems.

The Problem: Heterogeneity in the Modern Coding Classroom

The situation of the modern coding classroom is challenging to pedagogical despite the presence of very

good tools and the good-meaning curricula. The teacher-centered and traditional model where one teacher leads

a group of students is traditionally stressed by the heterogeneity of students. Youthful pupils to programming as

found in an official school curriculum to after-school activities such as Code Ninjas would have an enormously

diverse cognitive aptitude, previous experiences and learning profiles. There are students who can intuitively

Adaptive Scaffolding In Silicon…….

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 32 | Page

understand such abstract notions as variables and loops, and there are students who need to be drilled and fed

concrete examples. Much of the time spent in the process of coding is devoted to debugging, or the systematic

process of recognizing and eliminating errors. The process is essential as a learning procedure but also the leading

cause of frustrations and disengagement (Pea, Soloway, and Spohrer, 1987).

A teacher working in a standard classroom environment has to split their focus and in most cases they

end up adopting a one-size-fits-all model which educates an average student. In turn, the more sophisticated

learners might lose interest because they are not challenged, whereas those with difficulties might be left out as

they will form a fixed mindset that they are not good at coding. Time and class size are very critical problems that

infringe upon the ability of the instructor to give immediate, one-on-one feedback, which is a critical element in

learning to code. This bottleneck has been seen to leave students with wait on help, their learning flow halted or

left dependent on the instructor to do their problems instead of learning how to do them on their own. This

systematic problem weakens the ultimate aim of coding education, which is to have students as an independent

and self-confident problem-solver.

The Research Gap: Organizing the application of AI to K-12 Coding Pedagogy.

The possibility of Artificial Intelligence in Education (AIEd) to overcome the needs of scales and

personalization is not new to the literature (Baker, 2016). The use of AI tutors in the field of K-12 coding

education is a novel and under-researched field, even though Intelligent Tutoring Systems (ITS) have long existed,

and they have demonstrated potential in the more structured subjects of mathematics and physics. Although there

are numerous tools that can offer automated code evaluation or debugging suggestions, they mostly serve as

advanced compilers or linters, and do not as such actual pedagogical agents. An integrated, pedagogically-based

model that outlines what an effective AI tutor should be in the case of young learners in the area of coding is

lacking. The needs at the unique developmental stages, the significance of motivation and interest as well as the

objective to develop long-term solutions but not short-term task accomplishment should be considered through

such a framework. This gap is what the focus of this paper will address by suggesting and discussing a holistic

model of AI code tutors based on the recognized theories of learning.

Purpose and Objectives

The main aim of the research is the detailed research of the role and effectiveness of AI tutors in

increasing the K-12 teaching of coding. A conceptual framework will be created in this paper to express the most

important functions of an AI tutor, as well as to compare its potential and the traditional models of instruction

systematically. The aim is to present an unambiguous, theoretically-founded vision of the design and

implementation of AI systems that serve as flexible, personalized learning coaches to young programmers.

This paper has the following specific objectives:

To revise the learning theories of constructivism, Zone of Proximal Development, and Cognitive Load

Theory that form the basis of the effective pedagogy of coding.

In order to present the conceptual framework of the successful AI coding tutor in the form of the

Adaptive Pedagogical Scaffolding (APS), one will have to describe its central elements.

To make a comparative analysis of the proposed AI-Tutor-Augmented model to be compared to the

traditional instructor-led model on the major pedagogical levels: personalization, feedback, independence, and

engagement.

To assess critically the practical restrictions, difficulties, and ethical implication related to the extensive

use of AI tutor in coding learning.

In order to comment on the implications of AI tutors to the role of the human educator and the future of

the blended learning environment in computer science education.

Structure of the Paper

The current paper is divided into a number of essential sections. The Literature Review of the applicable

educational theories and the historical context of AI on education are demonstrated in Section 2. Section 3

describes the Methodology based on the conceptual analysis and the APS framework construction. Section 4 is

the most essential part of the paper the Analysis, which provides the framework to compare AI tutor model and

traditional one. Section 5 provides a more comprehensive Discussion of the findings, its implications, limitations,

and ethical aspects. Lastly, the Conclusion is provided in Section 6, providing a summary of the primary findings

and projecting potential research opportunities in the future.

II. Literature Review
This part is a synthesis of theoretical and empirical literature on which the capability of AI tutors in

coding education can be understood. It starts with the discussion of the fundamental learning theories

Adaptive Scaffolding In Silicon…….

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 33 | Page

underpinning contemporary pedagogy and then concentrates on the history of development of youth-centered

coding education and finally the history and state of AI in education, putting a specific emphasis on systems

aimed at bringing programming to kids.

Theoretical Bases of Learning and Pedagogy.

Educational technology is not just a technical means, but it is a reflection of a pedagogical theory. The

development of an AI coding tutor should be based on the thorough comprehension of the learning process in

students, especially in such complicated and constructive fields as programming.

Constructivism and Constructionism.

Constructivist theory is based on the idea that learners are actively involved in creating their own

knowledge and meaning of their experiences, which is going on instead of passively receiving information

(Piaget, 1971).5 Learning is a participatory process of meaning-making. This concept was expanded by another

learning theorist, Seymour Papert, a student of Piaget and a pioneer of computing in education, into the concept

of constructionism.6 Papert (1980) argued that learning occurs best when the learner is busy building something

that he or she personally finds meaningful, through which a learner rematerializes his or her thought processes,

challenges his or her own false beliefs, and engages in a cycle of design-testing- debugging.

Programming platforms such as Scratch are the direct successors of LOGO programming language and

are specifically designed based on constructionist concepts (they offer objects to think with such as sprites and

code blocks). An AI tutor that would be constructed under this paradigm must not be a source of facts but a helper

in the construction. It ought to facilitate the creative process of the student, assist them to overcome technical

challenges that hinder their project objectives, and experiment, thus strengthening the notion that learning is a

constructive process of building, as well as, trying.

Vygotsky's Zone of Proximal Development (ZPD)

A sociocultural learning theory developed by Lev Vygotsky (1978), has given rise to the concept of a

Zone of Proximal Development (ZPD).11 The ZPD can be defined as the distance between what a learner can

achieve without instruction and what he/she can achieve with the help of guidance and support of the so-called

More Knowledgeable Other (MKO), a teacher, a peer, or even a technological device.10 When a task is not

challenging enough (under the ZPD), the student gets bored. When it is too challenging (beyond the ZPD), the

student becomes confused and gives up.

The most important teaching method of exploiting ZPD is the scaffolding, in which the MKO offers

temporary and supportive frameworks that are gradually withdrawn as the learner develops his or her competence

(Wood, Bruner, and Ross, 1976).11 An AI tutor is in the best position to assume the role of a dynamic and

indefinitely long-suffering MKO. It has the potential to simulate the current state of knowledge of a student and

can give them scaffolds that are specifically tailored and specifically focused, such as a hint on how to fix a bug,

a simplified explanation of the new concept, or a sub-problem to be solved, that fits within their own ZPD

perfectly. An AI can also keep this optimal level of challenge in all students at the same time (unlike a human

teacher working with a large group), and increase or decrease the level of scaffolding in real-time as the student

advances.

Cognitive Load Theory

Cognitive Load Theory (CLT) is a theory that is interested in how instruction is designed with the

consideration that it facilitates the maximum use of limited working memory (Sweller, van Merriënboer, and

Paas, 1998).12 Cognitive load theory makes a distinction between intrinsic load (the difficulty of the concept

itself), extraneous load (the load created by the instructional method), and germane load (the load devoted to the

learning process and schema development).13

Extraneous load may be high in the case of coding education. Complex syntax, inadequate examples and

gnarly user interfaces may all be distracting to the underlying logical ideas. In this regard, debugging, especially,

is a potentially gigantic cognitive burden because students attempt to follow variables, control flow and error

messages all at the same time. An AI tutor will be able to assist in this load by:

Breaking down complex problems: Non-decision-making A large project is broken down into smaller

manageable sub-tasks.

Giving just-in-time information: Rather than having to hunt the student down to find a particular

explanation, offering the explanation at the moment it is required.

Visualizing execution Visualize how the code is being executed step-by-step, with animations or

diagrams, and bring abstract processes into reality by making them concrete and relieving mental simulation of

its load.

The AI tutor is able to control extraneous cognitive load by letting the student direct his cognitive energy

Adaptive Scaffolding In Silicon…….

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 34 | Page

towards the intrinsic challenge of the programming logic itself, which helps them understand and form a schema

better.

The Evolution of K-12 Coding Education

The teaching materials and systems to teach children to code have been changing, depending on both the

level of technology and the level of learning science knowledge.15 It started with text-based languages such as

BASIC and LOGO in the 1970s and 1980s. The LOGO, together with its turtle graphics, was an unprecedented

success, and thus displayed that children could interact with very powerful computational concepts by using an

intuitive and graphical interface (Papert, 1980).

Visual block-based programming languages came into the limelight in the early 2000s, the first being

MIT-based Scratch, which has had no syntactical error and allowed children to concentrate solely on the logic

and creativity of their projects (Resnick et al., 2009).18 The visual block-based programming language has

significantly reduced the barriers to entry and has been central to the worldwide dissemination of coding

education. After Scratch, many block-based code systems such as the Hour of Code by Code.org and Blockly

now provide block-based code access to millions of students.18

Over the last few years, a greater focus has been placed on the development of seamless block to text

language translation. Sites have frequently come to have dual-mode editors displaying the block code and its

Python or JavaScript counterpart. This will de-mystify syntax and prepares students to programming at a higher

level in the real world. Current coding education is specifically becoming project-based and following the

concepts of constructionism, as the students create websites, games, and applications, which are relevant to them.

AI E in Education (AIEd) and Intelligent Tutoring Systems (ITS)

The idea of computer tutors is almost as old as computers. The first computer-aided instruction (CAI)

systems of the 1960s and 1970s were mostly electronic page-turners, displaying unchanging data and multiple-

choice questions. Intelligent Tutoring Systems (ITS) was innovated as the model of student knowledge (a "student

model"), making the system adapt its instruction (Carbonell, 1970).19 A typical ITS architecture consists of four

components:

The Domain Model: A professional image of the knowledge that should be instructed.

Student Model: A dynamic depiction of the existing knowledge of the individual learner, knowledge, skills, and

misconceptions.

The Tutoring Model (or Pedagogical Model): A collection of guidelines and plans of how to teach, when to

interrupt, what feedback to provide, what issue to introduce next, etc.

The User Interface: It is the interface where the system and the learner interact.

ITS have been created successfully in well-understood areas such as algebra (e.g., Cognitive Tutors),

physics and grammar where the expert knowledge can be readily written down and the errors by the students can

be readily classified (Anderson, Corbett, Koedinger, and Pelletier, 1995).20

It is more difficult to apply the ITS model to the field of education in programming. The domain model

is huge and imprecise; it is commonly in the case of programming problems that there is a multiplicity of correct

solutions. Misconceptions can be not only simple errors of students but can also be complicated logical mistakes

or inefficiency in style. With these difficulties however, a lot has been achieved. Earlier systems such as LISP

Tutor and PROUST were aimed at debugging and program analysis (Johnson & Soloway, 1985). Other more

recent studies have investigated the data-driven methods, with machine learning being used to process vast

amounts of student code to produce hints and feedback automatically. As an example, the systems can learn to

recognize the general patterns of bugs, and propose fixes, or group the solutions made by students to find other

viable solutions (Piech et al., 2015). Nevertheless, a lot of these systems are research projects or only introductory

courses in universities. The particular issue of developing an effective, entertaining, and pedagogically valid AI

tutor to the K-12 audience, whose mental and motivational requirements are different, is a pressing field of

development.

III. Methodology: A Conceptual Framework Approach
The current study uses conceptual analysis and development of frameworks in order to answer the

research objectives, which is a qualitative approach to research. This is suitable because the focus is not to report

about an empirical experimentin order to build a coherent and complete model in order to understand and design

AI coding tutors. The methodology can be used to conduct a profound systematic study of the principles, functions

and interaction of the proposed system.

Research Design

The study method is that of a comparative analysis between two different pedagogical models:

The Traditional Instructor-Led Model: This model is the default form of the current practice in most classes of

Adaptive Scaffolding In Silicon…….

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 35 | Page

K-12 coding classes. It is described as having one teacher, a more or less rigid curriculum, and a low ability to

provide real-time and personalized instruction.

The AI-Tutor-Augmented Model: In this model, the human instructor is not removed, but it enhances their

functionality through an AI tutor that offers an individualized, scalable support to each student, enabling the

instructor to consider the capabilities of higher-order skills.

The conceptual framework to be used to analyze the analysis will involve the conceptual framework

described below. It is through this framework that the decomposition of the major pedagogical functions will be

done, and the performance of each model identified.

Adaptive Pedagogical Scaffolding Framework (APS).

In order to present the analysis, we suggest the framework of Adaptive Pedagogical Scaffolding (APS).

The framework theorizes a perfect AI tutor to teaching K-12 coding as a system of five connected and dynamic

modules. It is based on the theories of learning mentioned above and scaffolding within the Zone of Proximal

Development is the organizing principle of the theory.

Fundamentals of the APS Framework.

Learner Profiling Module: This is the thinking mechanism of the tutor. It constructs and maintains a multi-

dimensional and detailed profile of every student. This is not just a matter of performance measures (e.g.,

problems solved). It observes the command of certain concepts (e.g., loops, conditionals, functions), the most

frequent errors and misconceptions, problem-solving techniques, and can even predict the engagement by proxy

measures such as time-on-task, solicitation of hints, and keystroke patterns. This module realizes the classic ITS

architecture student model.

Personalized Pacing Engine: This module makes use of the information gathered in the Learner Profiling Module

to optimize the learning path of every student on the fly. It acts as the centre of adaptivity, and the learner is

operating in his/her ZPD. In case a student has shown mastery, the engine presents increased complex concepts

or challenges. In case a student is having a problem, it can suggest prerequisite exercises, give an alternative

explanation of a concept or step-by-step break down of a problem. This module is the direct opposite of a one-

size-fits-all curriculum that is linear.

Real-Time Feedback Generator: This module gives a real-time feedback with respect to the code that the student

is writing. It serves the purpose of reducing the extraneous cognitive load and reducing the feedback loop which

is essential to the learning process. The multi-layered feedback is between:

Syntactic Feedback: Spelling mistakes and syntax mistakes are immediately identified (e.g., "It seems like you

have forgotten to add a colon in the end of your if-statement.).

Semantic/Logical Feedback: Determining errors in the reasoning of the program (e.g., This loop will never end.

What are you going to put on it to cease?

Stylistic Feedback: Recommendations of how to make code more readable and efficient (e.g. "You have used this

code three times). Have you thought of having a function?

Socratic Hinting System: This is the most advanced pedagogical module, which aims at promoting problem

solving independence. In case a student is not able to find a correct answer, this system offers a set of more and

more specific hints as a question. This process of Socratic method promotes the aspect of metacognition, where

students are required to take a look into their own code and find the solution by themselves. As an example, a

hint sequence can be:

Hint 1: "Have a better glance at the value of the score variable within your loop.

Hint 2: What will be the initial score value? But what becomes of it in each succession?

Hint 3: it appears that the score is being set to zero each time the loop is run. Where would you put its start up so

that it only needs to start once?

This module clearly adheres to the constructionist ideal of debugging and discovery based learning.

Motivational Engine: This module deals with the affective aspect of learning and this is essential to the

K-12 learners. It tries to remain active and develop resilience. It can indulge in gamification (e.g. points, badges,

progress bars), provide personalized encouragement based on effort and progress, and suggest projects that reflect

the interests expressed by the student (e.g. art, games, music).22 By rewarding small accomplishments and putting

contextual challenges into a bigger and meaningful goal, this module will keep the student going through the

Adaptive Scaffolding In Silicon…….

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 36 | Page

frustrations of learning to code.

Scope and Delimitations

The research problem in this study is limited to conceptual and theoretical examination of the AI tutor

in the context of K-12 coding education. It stresses the introduction to intermediate concepts in programming

languages such as Scratch, Python and JavaScript. Empirical data on a live application of the APS framework

was not analyzed; instead, the framework is acted as an analytical tool to organize the argument and compile the

results of the literature review. This paper does not discuss pedagogical roles of the AI tutor and instead does not

get into the machine learning architecture (e.g., transformers, reinforcement learning) that would be necessary to

implement each of the modules, because that is out of scope of the current educational analysis.

IV. Analysis: A Comparative Evaluation OF Pedagogical Models
This section leverages the Adaptive Pedagogical Scaffolding (APS) framework to conduct a detailed

comparative analysis between the Traditional Instructor-Led Model and the proposed AI-Tutor-Augmented

Model. The evaluation is structured around four key pedagogical goals derived from the user's initial prompt and

the literature: personalization, feedback, independence, and engagement.

Personalization: From Fixed Curriculum to Dynamic Learning Paths

Personalization is the capacity of designing the learning process to meet the individual needs and

specifics of every learner. It is one of the foundations of successful instruction but extremely hard to do on a large

scale.

The Conventional Instructor-Led Model.

In conventional classroom, the curriculum is the main device of instruction. It is normally formulated in

the form of a linear sequence of the topics and exercises that should be studied within a given span of time. The

teacher moves the lesson at his or her own speed depending on his or her general impression of the groups and

tends to target the average student. The limitation that arises with this model is that it is not able to effectively

serve the outliers.

In the case of the struggling student: When a student does not understand a basic concept (e.g. variables),

later concepts (e.g. loops that take variables) will become exponentially harder. The lesson continues and the

student gets bigger gap in his/her knowledge and the confusion and loss of confidence become the cycle of the

same. The teacher is able to provide additional assistance but such assistance is constrained by his/her availability.

In the case of the advanced student: A student who learns fast is compelled to wait until his or her fellow

students learn. They can get distracted and lose interest and they might start to develop disruptive tendencies or

get bored with the subject. The teacher may offer so-called enrichment activities, though they are not invariably

a planned and coordinated course of learning, but rather a series of spontaneous add-ons.

The AI-Tutor-Augmented Model

The Personalized Pacing Engine and the Learner Profiling Module of the AI-Tutor model dramatically

alters this situation. In the learning path, the track is no longer a track but a branching dynamic network of ideas

and actions.

The Case of Adaptive Scaffold: The case is that of a student learning functions in Python. Learner

Profiling Module notes that though the student knows how to call a function, he always gives an error when

attempting to define a function with parameters. The Personalized Pacing Engine interferes instead of proceeding

to the next topic (e.g., return values). It may include a micro-lesson on parameters of functions per se, and then a

set of specific fill-in-the-blank tasks isolating the given skill. After the profiler notices a series of success, it will

automatically put back the student to the original learning path.

Dynamic Challenge Adjustment: The opposite is the case with the student who masters functions

quickly; then the engine can speed up his/her development. It may present a more complex problem of challenge

that involves more than one function, or even present a sophisticated optional subject, such as recursion. The

challenge is also structured to be in a state of flow (Csikszentmihalyi, 1990), in which the difficulty level is set at

optimal levels to correspond with the student as this is the most effective learning and enjoyment session. It is a

systematic, data-driven personalization that will see to it that each student is working within his or her own ZPD,

which would be logistically impossible in a classroom environment of a single human teacher to work with a

whole classroom of students at the same time.

Feedback: From Delayed and Scarce to Instantaneous and Abundant

Some of the strongest variables in the learning process include the speed and the quality of feedback.

Timely feedback is required in programming where one character is out of place and the entire programme will

Adaptive Scaffolding In Silicon…….

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 37 | Page

fail.

The traditional Instructor-Based Model.

The main source of feedback is the human instructor. Although this feedback may be subtle,

compassionate as well as extremely deep, it is a very limited asset by its very nature. When a bug is raised on

three students in a class of ten, then all the ten students have to wait their turn. In this waiting process, a student

can either go on hiatus and lose momentum, or keep on doing the same thing with no instructions, a process that

may end up upholding the wrong assumptions. The feedback process is lengthy and time of instructor is always

a bottleneck.

The AI-Tutor-Augmented Model

The AI-Tutor model Real-Time Feedback Generator converts feedback as a limited resource into an on-

demand utility with the abundance. The response time is reduced to seconds.

Immediate Error Correction JavaScript may be one of the programming languages to which a young

learner tries to compare two values with one equals sign (=), the assignment operator, rather than the comparison

operator (== or ===). An old fashioned atmosphere would merely lead to a logical fault that could only be

debugged in minutes. The feedback generator in the AI tutor would automatically highlight such a line of code

and give it an instant response such as: Great start! Also, in JavaScript, we use == to determine whether two

things are equal or not. The one-character = is used to assign a variable a new value. This direct, immediate

intervention helps to avoid the formation of additional erroneous logic by the student on a false basis and avoids

excessive cognitive burden.

Multi-Layered Pedagogical Feedback: This is not the feedback of correctness but of quality. Suppose

that a student creates a working but ineffective block of code in Scratch. It may not be possible for a human

instructor to do so. However, the AI tutor is able to examine the code and provide a suggestion: "This code is

efficient! Did you not know you might make it shorter? You are repeating a five time action, so you might make

use of a repeat loop instead. This goes beyond the debugging level to learn the ideas of more advanced concepts

such as abstraction and efficiency, and it encourages the student to think more like a professional programmer.

Independence: From Instructor Dependency to Self-Directed Problem-Solving

The ultimate goal of coding education is to create independent thinkers who can solve novel problems.

This requires metacognitive skills—the ability to plan, monitor, and evaluate one's own thinking and debugging

process.

The Conventional Instructor-Learner Model.

One of the pitfalls of traditional learning is the occurrence of instructor dependency. The default reaction

the student may develop when it comes to a bug is to say that it is broken, fix it. The good-intentioned teacher

may assume the student and jump to the point of correction and give the answer. Although this will address the

problem at hand, it will deprive the student an opportunity to learn and will further encourage a passive attitude

towards problems. The student gets to know that it is better to seek the answer by the path of least resistance.

The AI-Tutor-Augmented Model

Socratic Hinting System is a system created to address this tendency and eliminate dependence. It is like

a guide, not a prophet. Its main focus is to give the least possible assistance to have the student unstuck, forcing

him or her to engage in the intellectual work.

Developing Metacognitive Habits: Consider the case of a Python program written by a student to act as a simple

calculator and it is producing an error. They do not raise their hand, but refer to the AI tutor.

Student: "My program is not working.

AI Tutor (Socratic Hinting System): I see it is halting on the 10 th line. The error says TypeError. What is a

TypeError normally used to denote?

Student: "Because I am working with the wrong kind of data?

AI Tutor: "Exactly. The line 10 attempts to add two variables,which are num1 and num2. What type of data do

you believe they are at the moment? Keep in mind the functionality of input function.

Student: Oh, everything is a string with input. I must first change them into figures!

In this correspondence the AI did not provide the answer (int). Rather it took the student through the

same logical process that an experienced developer would go through: read the error, hypothesize the cause, and

test the hypothesis. Through such systematic debugging discussions, students learn to use the debugging process

and gain the ability and confidence to debug future problems themselves. It is a direct application of scaffolding

of metacognitive skills.

Adaptive Scaffolding In Silicon…….

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 38 | Page

Engagement: From Extrinsic Motivation to Sustained Interest

Learning revolves around participation. Rigorous work, particularly on the challenges led to, needs

intrinsic and extrinsic motivation, 23.

The Conventional Instructor-Led Model.

The interest of students in classwork is usually greatly how dynamic the instructor is and the intrinsic

interest in the class project. A charismatic teacher may make any subject interesting, but this is not a scalable

solution. During the debugging stages, motivation can drop down since it seems like nothing is being done. When

a student is not personally interested in a project, it motivates them using only extrinsic incentives (e.g., achieving

a good grade) which is not as resistant to change as intrinsic interest.

The AI-Tutor-Augmented Model

The Motivational Engine offers a step-by-step method of engagement promotion and preservation

through personalization and established psychological concepts.

Gamification and Progress Visualization: The engine will be able to have a system of points earned by

doing exercises, badges earned on Mastering concepts (e.g., Loop Master, Function Wizard), and a visual skill

tree that will indicate the student what he/she has already learned and what more he/she may learn. These aspects

give the feeling of achievement and make the progress real which is very encouragement to the young learners.

Individualized Project Recommendations: The Learner Profiling Module is able to determine areas of

interest by examining the project history of a student or even in a basic onboarding questionnaire. This information

can be used to propose projects by the Motivational Engine. In Scratch, you make art projects, right? We have

noticed. What would you like to learn to use Python, the programming language, to create awesome geometric

patterns in code, in your next project? This correlates the learning activities with the inner interests of the student

as the coding becomes not an obligatory activity, but a potent instrument of the mental expression. The AI-assisted

constructionist approach can boost the long-term engagement and retention by a significant margin.

V. Discussion
As the analysis above shows, the AI-Tutor-Augmented model designed in the framework of the APS has

a tremendous potential to help in meeting the primary challenges in K-12 learning on coding. Nevertheless, a

critical assessment must involve a critical discourse of the overall implications of this technological change,

limitative realities, as well as ethical concerns.

Consequences to the Role of the Human Educator.

One of the major issues relating to AI in the educational field is an apprehension that AI will drive out

human teachers. According to our analysis, it was not so. The AI tutor is not placed to replace but to be an effective

tool of augmentation.24 It is strong in its ability to deal with the large-scale, repetitive, and data-heavy aspects of

teaching that tend to take up the largest portion of the time and the energy of an instructor.

The AI tutor will be able to offload some of its workload to the human educator, allowing him or her to

concentrate on what is uniquely human. The role of the instructor transforms to a role of an information giver to

a facilitator of higher order thinking. They can use their time in other activities like:

Inspiring Creativity: Teaching students to brainstorm and come up with ambitious, personally significant projects.

Teaching Collaboration: Showing how to do pair programming and group Projects, and teaching the fundamentals

of software development, such as communication and collaboration.

Developing Design Thinking: Talking about the Why of a project, rather than the How. Having students discuss

user experience, ethics and real-world consequences of technology.

Affective Support: This relates to the ability to identify the frustration of a student, or the excitement of the student

who makes an aha! instances of pure human interaction and support.

This model of blended learning has the AI offering the scaffolding that is unique to the learner and the

human educator offering the vision, mentoring and emotional intelligence, which creates a more comprehensive

and better learning ecosystem than either would alone.

Critical Analysis and Practical Failures.

Even though it has a strong theoretical potential, there are some major challenges to the practical

application of the APS framework that should be mentioned.

The Dilemma of Real Pedagogical Knowledge.

The greatest technical and pedagogical difficulty is, arguably, to develop the Socratic Hinting System.

Although AI models especially large language models (LLMs) have become proficient at producing text that is

human-like, there is still no solution to the problem of endowing them with a real pedagogical sense. Not only

Adaptive Scaffolding In Silicon…….

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 39 | Page

should a Socratic tutor be familiar with the code but also extract the misconception that the student has and create

a hint that fits precisely in his or her ZPD. A too general hint is useless, and a hint that is too specific compromises

the learning goal. The ability to formulate an algorithm to predictably walk this thin line in the face of the near-

infinity set of student errors and projects is a current and challenging field of AI research.

The Danger of Over-Scaffolding and of Productive Struggle.

One of the fundamental tenets of learning is that one should learn through the process of productive

struggle the struggle with a challenging problem over one can barely accomplish at this moment. Another

potential danger of an AI tutor of high efficiency is that it may offer excessive scaffolding, therefore, reducing

the learning process to being too frictionless. When a student is aware that there is a flawless tip at the touch of a

button, s/he might be less likely to endure the hardships single-handedly. The mechanism of the system needs to

be built with the features of the so-called scaffold fading, when the system gradually decreases the level of

assistance to the student as his/her level of proficiency increases so that the student is properly challenged.

Algorithmic Bias and Equity

AI systems can be trained on data, and in case such data have biases, then the AI will be trained and

propagate such biases. A coding tutor who has only been trained on solutions to certain demographics or cultures

will be prone to give certain forms of problem solving a good score or even fail to grasp code written by a student

representative of a different background. Moreover, there is the problem of equity on access. A classroom that

will employ an AI-tutor will need a 1:1 device-to-learner ratio and a high-speed Internet connection. Unless every

student has access to these resources, then this technology may unwillingly increase the digital divide, offering

an improved education to already advantaged students and leaving others further disadvantaged. This goes against

the aim of ensuring education is more equitable.

The Affective Gap

The Motivational Engine has the capability of simulating the encouragement via gamification and pre-

programmed messages, but cannot imitate the actual empathy of humans. It cannot stare a frustrated student in

the eye and talk to him/her saying, I understand it is difficult, but I have noticed you can solve difficult tasks, I

am sure you can do it. This emotional aspect of instruction, which is the establishment of relationships, building

trust, and offering emotional support is the sole province of the human teacher and an essential part of a positive

learning environment, in particular when dealing with young children.

VI. Conclusion
The aim of the research was to examine the purpose and effectiveness of AI tutors in solving the

longstanding issue of personalization, engagement, and scalability in K-12 coding education. The old, one-to-

many teaching approach though useful cannot deal with the diverse needs of all students in a contemporary

classroom. This paper has formulated a concise, pedagogically-focused vision of how AI can be used to make

learning more effective, engaging, and equitable by suggesting and discussing the Adaptive Pedagogical

Scaffolding (APS) framework.

Summary of Findings

Comparative analysis proves that an AI-Tutor-Augmented model possesses the strong benefits in

comparison with the traditional model. The five modules of the framework, namely, Learner Profiling,

Personalized Pacing, Real-Time Feedback, Socratic Hinting, and Motivation, combine to create an active learning

companion with adaptive scaffolding at the large scale. Such a system may offer students both ZPD-based

personalized learning paths to ease cognitive load and frustrations, as well as immediate feedback and Socratic

dialogue as the means to develop metacognition required to solve the problem independently. More importantly,

that does not make the human educator irrelevant. Rather, it can be supplementary and enables them to concentrate

on the higher-order and distinctly human elements of teaching mentorship, creativity and emotional connection.

Contribution to Knowledge

The main contribution of this paper is to integrate the known theories of learning into one coherent

framework, the APS framework, which can be used as a design and assessment template in the future of AI coding

tutors. It takes the discussion further than defining these tools as debuggers or content delivery systems, and

redefines them as complex pedagogical agents. The research outlines the form of the analysis with the main

objectives of personalization, feedback, independence, and engagement, which is why it suggests a clear language

and a range of criteria to help practitioners, developers, and policymakers to evaluate the quality and potential of

AI in coding education.

Adaptive Scaffolding In Silicon…….

DOI: 10.9790/0661-2705043140 www.iosrjournals.org 40 | Page

Future Research Directions

The issues and constraints that are presented herein enlighten some crucial paths of research in the future.

The direction of the development of really efficient AI tutors is still a process, and it will need collaboration

between disciplines. The major future directions are:

Empirical validation: Longitudinal studies should be carried out to adopt the application of a tutor

according to the APS framework in practical classrooms. This requires such studies, which can be conducted

empirically to determine the effect of this on student learning outcomes, student engagement, and problem-

solving independence, compared to control groups.

Moving forward with Socratic Dialogue Systems: One of the key concerns of the AI research community

must be the creation of more robust and pedagogically sensitive NLP models of the Socratic Hinting System.

These include the study of student misconception modeling and automated generation of curriculum.

Research on Affective computing: The possibilities of incorporating affective computing to enable the

AI tutor to identify and react to emotions of students. This may include interpreting facial cues, tone of voice, or

even key bang to conclude frustration or interest to make less judgemental interventions.

Assuring Ethical and Impartial AI: Writing novel approaches to auditing and counteracting bias in

educational AI systems. This involves developing a variety of training data and coming up with intuible systems

whose logic can be examined by teachers.

To sum up, the integration of artificial intelligence and the K-12 codes education is not a far away vision

but a new reality. The issues of implementation are quite significant, but the prospects of developing a new

generation of self-confident, innovative, and strong-willed problem-solvers are enormous. The AI tutor, in its

design with pedagogical principles as its core, is an extensive opportunity to democratize and enrich

computational literacy and enable any child to not only use technology, but to be a creator in the digital world.

References
[1]. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive Tutors: Lessons Learned. The Journal Of The

Learning Sciences, 4(2), 167-207.
[2]. Baker, R. S. (2016). Stupid Tutoring Systems, Intelligent Humans. International Journal Of Artificial Intelligence In Education, 26(2),

600-614.

[3]. Carbonell, J. R. (1970). AI In CAI: An Artificial-Intelligence Approach To Computer-Assisted Instruction. IEEE Transactions On
Man-Machine Systems, 11(4), 190-202.

[4]. Csikszentmihalyi, M. (1990). Flow: The Psychology Of Optimal Experience. Harper & Row.

[5]. Johnson, W. L., & Soloway, E. (1985). PROUST: An Automatic Debugger For Pascal Programs.27 Byte, 10(4), 179-190.
[6]. Papert, S. (1980). Mindstorms: Children, Computers, And Powerful Ideas. Basic Books.

[7]. Pea, R. D., Soloway, E., & Spohrer, J. C. (1987). The Buggy Path To The Development Of Programming Expertise. Focus On

Learning Problems In Mathematics, 9(1), 5-30.
[8]. Piaget, J. (1971). Biology And Knowledge. University Of Chicago Press.

[9]. Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J., & Ng, A. (2015). Deep Knowledge Tracing. In Advances In

Neural Information Processing Systems 28 (Pp. 505-513).
[10]. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. (2009). Scratch: Programming

For All. Communications Of The ACM, 52(11), 60-67.

[11]. Sweller, J., Van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive Architecture And Instructional Design. Educational
Psychology Review, 10(3), 251-296.

[12]. Vygotsky, L. S. (1978). Mind In Society: The Development Of Higher Psychological Processes. Harvard University Press.

[13]. Wing, J. M. (2006). Computational Thinking. Communications Of The ACM, 49(3), 33-35.
[14]. Wood, D., Bruner, J. S., & Ross, G. (1976). The Role Of Tutoring In Problem Solving. Journal Of Child Psychology And Psychiatry,

17(2), 89-100.

