
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 27, Issue 3, Ser. 1 (May. – June. 2025), PP 46-59

www.iosrjournals.org

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 46 | Page

Android Malware Detection Using Machine Learning

Abdulmunem Alsultan, Sherif Kamel
Computer Science Department – Arab East Colleges – Riyadh - Ksa,

Computer Science Department – Arab East Colleges – Riyadh - Ksa,

Computer Engineering Department – October University For Modern Sciences And Arts (MSA) –Giza - Egypt,

Abstract:
As the popularity and ubiquity of Android devices continue to rise, so does the risk of malicious software targeting

these platforms. Android malware poses significant threats to users’ privacy, data security, and overall device

performance. Therefore, effective detection and mitigation of Android malware have become essential to ensure

a safe and secure user experience. In this project, a malware detection system is proposed that extracts permission

and intent features from APK files using the SISIK web tool to effectively identify and classify applications as

malware or benign without the need to run the application. This is done by incorporating two different Machine

Learning (ML) algorithms, which are Random Forest (RF), and Support Vector Machine (SVM). To obtain the

best performance in our system, we use a feature selection method. The main contribution of this Research Paper

is to enhance the security of Android devices detecting malicious applications before installing them in the

devices. Our results show that the RF model, with the use of the Genetic algorithm (GA) to reduce the dataset’s

dimensions, achieved the highest performance metrics, including accuracy, recall, F1 score, and precision of

98%, 99%, 98%, and 98%, respectively.

Key Word: Machin Learning, Android Malware, Malware Detection.

--- ----------

Date of Submission: 22-04-2025 Date of Acceptance: 02-05-2025

--- ----------

I. Introduction
With the development of communication technology and as we live in an interconnected world, mobile

devices have become an important part of our daily lives. Android, being one of the most popular mobile

Operating Systems (OSs), offers a wide range of features and applications that enhance our productivity and

entertainment. As the popularity of Android devices continue to rise, so does the risk of malicious software target

these platforms. Therefore, effective detection and mitigation of Android malware have become essential to

ensure a safe and secure user experience.

In 2018, Android devices were identified as the most targeted system, experiencing the highest

percentage of malware infections at 47.15%. Windows/PCs encountered a threat rate of 35.82%, IoT faced

16.17% threats, and iPhones experienced lower threat rate of 0.85%, as shown in Figure 1. Consequently, there

is a strong need for reliable, scalable, and robust malware detection tools for Android devices because malware

can compromise user privacy, steal sensitive information stored on the device such as passwords and bank data,

and cause financial losses through activities like identity theft or fraudulent transactions. By detecting malware,

users can maintain the security and integrity of their personal information and mitigate potential harm.

Figure 1. Percentage of Malware Attack

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 47 | Page

The main focus of this Research Paper is to develop an effective malware detection approach that is

designed for Android OS. The detection is based on the static features which are declared in the

AndroidManifest.xml file. To achieve this, we start by loading the dataset, which is essential for training and

evaluating the detection models. Next, it is important to preprocess the dataset including cleaning it and selecting

the most relevant features or characteristics of Android applications that can be used to distinguish between

malicious and benign applications. Building the ML models for malware detection is the most important part of

this project. The malware detection system is tested and evaluated with both known and unknown malware

samples to assess its effectiveness and robustness. This project attempts to achieve the following objectives:

1. Classifying APK files as safe or malicious based on static features found in the APKs.

2. ML models are used in order to analyze the features and predict the class of the applications.

3. Achieving a detection accuracy rate above 95%. This was achieved through the use of ML models. Moreover,

the feature selection algorithms participated in increasing the accuracy of the ML models.

The remaining of the paper is structured as follows. In section II, the related background is discussed.

Section III presents a survey of the exiting papers and studies. Section IV presents details about the proposed

systems. Section V explores the result we got. Finally, Section VI concludes this paper.

II. Background
This section provides an overview of malware detection and malware analysis, the architecture of

Android OS and the structure of its applications, and the last section gives a general background related to machine

learning (ML).

Structure of Android Application

The extension of Android application files is called Android Package Kit (APK), which stands for

Android Package Kit. An APK is a file that is compressed in ZIP format and runs an application installed on the

Android OS. It contains multiple files that are needed to run an app, and when unzipped, the APK file’s unique

structure is revealed [1]. Figure 2 shows the structure of the APK file.

Figure 2: Structure of APK File

The structure is composed of:

1. AndroidManifest.xml: This file is mandatory and contains essential information about the app, such as the

permissions required, metadata, hardware and software features, version, package name, etc. Once an

application is launched, the first file the android system seeks is the Manifest file [2]. The focus of this project

is on this file as it contains most of the required static features.

2. Res folder: This folder includes various sub directories, such as drawable, graphics layout, sound setting,

languages, and more.

3. classes.dex: This file contains the compiled bytecode of the app’s Java or Kotlin classes. It is a compressed

version of the Dalvik EXecutable (DEX) format, which is the format understood by the Android Run-Time

(ART or Dalvik).

4. lib/ directory: This directory contains native libraries required by the app, if any.

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 48 | Page

5. META-INF: This directory contains information about the APK’s contents and digital signatures mainly for

security and integrity purposes.

6. Resources.arsc: This file stores compiled resources used by the app, like strings, layouts, images, and other

assets [3].

7. Assets: This directory can optionally contain additional application assets, such as raw data files or custom

fonts.

Malware Analysis Approaches

Static, dynamic, and hybrid analysis are the most used techniques in Android malware detection. Static

analysis involves examining the code and resources of an Android application without executing the program

directly. It is applied by analyzing the AndroidManifest.xml file, smali files (which contain the application’s

bytecode), and a set of static features, such as permissions, API calls, and Dalvik opcode. These artifacts can be

obtained by decompiling the APK files. This approach offers several advantages, including shorter analysis time

and lower computational requirements compared to dynamic analysis methods. By leveraging static features, it

becomes possible to quickly assess the application’s security and detect known malware signatures or common

patterns. However, it may be less effective in detecting sophisticated malware that relies on dynamic behavior

[4].

Dynamic analysis involves executing the applications and observing their behavior in real time. involves

executing applications directly on a real device or within a sandbox environment. This method focuses on

monitoring the behavior of the application during run-time. By running the application, analysts can observe its

interactions with the device, network, and user data. They capture logs and analyze the network traffic generated

by the application. While dynamic analysis offers a more comprehensive understanding of an application’s

behavior, it can be more time-consuming and computationally demanding compared to static analysis.

Nevertheless, it is highly effective in detecting sophisticated malware that employs evasion techniques or exhibits

malicious behavior only at run-time [4].

In hybrid analysis, to enhance the overall analysis, the malware is initially examined using static analysis

techniques, followed by a dynamic analysis approach. This two-step process involves analyzing the malware’s

code and structure without execution (static analysis) and then executing the malware and observing its behavior

in a controlled environment (dynamic analysis). By combining static and dynamic analysis, a more

comprehensive and thorough analysis of the malware is achieved [5].

III. Survey On The Existing Methodologies And Frameworks
With the rise of Android devices, malware targeting this platform has become a significant concern,

leading to various research efforts in detection methods. Numerous studies have explored different ML models

for Android malware detection, including decision trees (DT), support vector machines (SVM), and deep learning

(DL). This section provides a discussion about the recent works related to the detection approaches that were

identified and explored in the previous chapter.

Static Analysis

Malware Analysis for Effective Android Malware Detection

In this research paper, the author proposed a method for malware analysis and detection. This method

involved examining static attributes including manifest permissions, API call signatures, intent filters, command

signatures, and binaries. As shown in Figure 3, this detection approach includes 6 phases. The author used a

COLCOM dataset in addition to his dataset which was collected by him. This was done in the first step. The

second step, the author collected only the most relevant data from the application that is being analyzed. These

features include manifest permissions, API call signatures, intent-filters, command signatures, and binaries.

Figure 3: Detection Phases of Effective Android Malware Detection

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 49 | Page

The preprocessing phases include removing null values and duplication and making a balance between

the samples. The training and validation of the dataset is the next step in the process. Training and validation data

are separated from the original dataset. To verify that the data used for validation and training are completely

different, the Author has utilized cross-validation using a 5-fold fold ratio. Naive Bayes, Key Nearest Neighbors

(KNN), and Multi-Layer Perceptron are utilized as ML models that were used in this work for training and

validation along with a method called Principal Component Analysis (PCA), which was used in the feature

extraction step to reduce the number of attributes required to accurately characterize each app. The conducted

experiment showed that MultiLayer Perceptron has the highest level of accuracy but requires a long time for

training compared to other ML models used in this experiment. Moreover, the author concluded the two attributes

that most effectively distinguish malware from benign applications are the feature to read phone attitude and the

Internet. The limitation of this paper is that the best accuracy is obtained with the model that took a long time in

the training phase [6].

A Framework for Detection of Android Malware using Static Features

In this paper, the authors proposed an effective framework that combines static features and utilizes ML

classifiers. Firstly, they collected the samples and then removed the duplicate apps and performed labelling. After

that, static features are extracted using two tools, which are AXMLPrinter and Baksmali Disassembler. Three

types of static features were extracted: API calls, permissions, and intents. API calls were extracted from

classes.dex, while permissions and intents were extracted from AndroidManifest.xml. Every app is presented in

the form of a binary vector, 0s and 1s.

The last step is the classification process in which these features are trained using four ML classifiers

which are SVM, Random Forest (RF), KNN and DT and then compare the results. They divided the dataset into

a ratio of 80% and 20%. 80% of the data is used for training and the rest 20% is used for testing purposes. In the

training phase, they applied a 5-fold cross validation technique in which the complete data is split into five equal

parts. At each run, four parts are used for training purposes and the rest is utilized for testing purposes. This was

repeated five times. The authors tested the models with the use of permission, intent, API calls, and a combination

of all previous static features. The results from the test indicate that the combination of features outperforms

individual features, As appears in Figure 4. Additionally, it was found that RF and KNN classifiers achieved the

best accuracy rate [7].

Figure 4: Accuracy Result of [7]

Dynamic Analysis

Mldroid Framework for Android Malware Detection using Machine Learning Techniques

In this paper, the authors proposed a framework that detects malware from Android applications by

performing dynamic analysis. As shown in figure 5, they started by collecting .apk files from different trusted

sources, such as Google’s play store. A total of 55,000 malware samples are collected from three different data

sets. The model is trained by using the dynamic behavior of real-world applications that were collected from

different promised repositories and the experiment was performed on more than 500,000 Android applications.

After collecting samples of .apk files from various repositories, they extracted permission and API calls from

each of the .apk files. The authors extracted features from the tested application while running them in an

emulator. Each application is represented as an 1844-dimensional Boolean vector, where ‘1’ implies that the

application requires the specified features and ‘0’ implies that features are not required.

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 50 | Page

Figure 5: Mldroid Framework Methodology

In features, selection and ranking, the authors used multiple algorithms and compared their performance.

They used chi-Squared, information-gain, oneR feature selection, PCA, and logistic regression. They explored

four types of ML models that are not widely used, which are the farthest first clustering, nonlinear ensemble

decision tree forest approach, Multilayer Perceptron and the last one is DL algorithm. In this work, distinct

performance matrix, which are F-measure, accuracy, intra-cluster and inter-cluster distance, were utilized for

measuring the performance of malware detection approaches. The con of the approach is that the model performed

better when only trained with a few numbers of malware families. They achieved a detection rate of 98.8% to

detect malware from real world applications [8].

Hybrid Analysis

Two Anatomists Are Better Than One Dual-Level Android Malware Detection

In this paper, the authors introduced an automated hybrid analysis tool that extracted groups of static and

dynamic features to analyze the behavior of an application in the Android platform. This approach includes two

main subsets, one for static analysis and one for dynamic analysis, as appear in figure 6. Static features were

extracted with the use of reverse engineering techniques. In this step the author utilized APKtool to get relevant

information from AndroidManifest.xml” and “classed.dex”.

In Dynamic feature extraction, they used a tool to extract dynamic feature during runtime. A total of six

feature categories are investigated, including permissions, intents, API calls, network traffic, inter-app

communication, and Java classes. Among these categories, only permissions, intents, and API calls apply to static

analysis. The authors found out that the API calls category showed greater influence and tends to enhance the

performance of the hybrid methods. Additionally, the Java classes category also achieved notably high average

importance scores. The experiment for this work was done over three different datasets in order to show that this

hybrid analysis of Android applications can greatly improve the detection capabilities of a detection model [9].

Figure 6: Automated Hybrid Analysis Approach

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 51 | Page

Comparison of previous literature review

This section provides a discussion about the recent related works to the detection approaches that were

identified and explored in the previous chapter. Table 1 provides a summary of related studies’ surveys regarding

the detection analysis approaches, used ML models, Advantages, and Limitations found in each paper.

Table 1: Summery of Related Works
Paper Pub.

Year

Analysis

Approach

ML Model Contribution Limitations

Malware Analysis

for Effective

Android Malware
Detection

2023

Static
Analysis

Naive Bayes, KNN, and

Multi-Layer Perceptron

Presenting the top 10

features that have a

significant impact on
the model’s decision.

1- The dataset is

old, containing

information that is
over five years old.

2- The best accuracy

is obtained with the
model that took a

long time in the

training phase.

A Framework for

Detection of

Android Malware
using Static Features

2020

Static
Analysis

SVM, KNN, RF, and DT. The authors conducted

a comparative analysis

to evaluate the
performance of using

individual features

compared to the use of
a combination of

features.

The times taken to

train and test the

models are not
mentioned at all.

Mldroid Framework

for Android
Malware Detection

using Machine

Learning Techniques

2021
Dynamic

Analysis

DL algorithm, farthest

first clustering,

Multilayer Perceptron
and nonlinear ensemble

decision tree forest

The use of rarely used

ML models.

The model

performed better
when only trained

with a few numbers

of malware families.

Two Anatomists Are

Better Than One
Dual-Level Android

Malware Detection

2020
Hybird

Analysis
Many ML models.

Applying the models

on three datasets and
comparing their result.

He uses of outdated
dataset

Summery

In a study conducted by Gorment et al. [10] on malware detection for different platforms, it was found

that 53.3% of the studies focused on static analysis. In contrast, dynamic analysis accounted for 28.9% and hybrid

analysis for 17.8%, as illustrated in the Figure 7. This also highlights the significant effectiveness and

attractiveness of static analysis for malware detection across various platforms. For that reason, we will use static

analysis for malware detection in this project.

Figure 7: Usage of Analysis Approaches Based on [10]

Even though the recently proposed works by researchers have great accuracy, but some did not take onto

consideration the time taken to build and the ML models. For example, BALCIOG ̆LU [6], the accuracy achieved

was close to 99%, but the time taken was very long. In research paper, a new Android malware detection

approach will be proposed using static features with a balance between the accuracy of the model and the time

taken to train and test the ML models.

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 52 | Page

IV. Proposed System
The objective of this section section, we focus on the phases for building the proposed system including

preprocessing the dataset, training and testing ML models, APK file analyzing, and classifying new samples.

Figure 8 shows a flow diagram of malicious and benign APKs classification using ML models.

Figure 8: Overall System Architecture

Data loading and preprocessing

First, started by loading and exploring the dataset. We used the Panda Python library to load the datasets

and store them in a data frame object. Then, to check how many rows and columns there are in each dataset, we

used the shape function. As we mention in the previous section, the number of features in the dataset is 532 and

number of samples is 847. Figure 9 shown the distribution of each class, where ”0” represents the Malicious

samples and ”1” represents Benign. Figure 10 shows the distribution of features based on group on the dataset.

Figure 9: Distribution of each class.

Figure 10: Distribution of features.

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 53 | Page

Data preprocessing refers to the steps and techniques applied to transform raw data to a suitable format

to be used for training and testing ML models. It involves transforming and cleaning the data to ensure its quality,

consistency, and suitability for further analysis. For performing data preprocessing in this research project we

have used Python programming language due to its extensive libraries and tools that could be used for this

purpose. The steps applied for data preprocessing include data cleaning, which involves handling missing data

and removing duplicate rows because they can affect the result of classification and lead to unreliable output.

Moreover, this step involves dealing with inconsistencies in the dataset. We will address any inconsistencies or

errors in the data.

Removing Null values

 The null() function will be used to check if our dataset contains any missing values. Figure 11 shows

when we checked the number of samples with null values. We got 847, which corresponded to the total number

of samples in the dataset. Then we realized that two columns contain null values for all samples. The second line

in the figure shows when we deleted these columns. After that, we again checked the number of features and

found that there were now 529 features and one column for the label.

Figure 11: Removing null values.

Shuffling the Datasets

 For shuffling the dataset, we use the sample() function with the parameter frac=1 to ensure that the entire

dataset is sampled. Data shuffling or randomization is used because the samples in the datasets are often collected

in a specific order which may introduce some bias. By shuffling the data, we ensure that the order of the data

points does not influence the model’s training and testing process.

Feature Selection

 Feature selection is a technique that involves reducing the number of features in a dataset by selecting the

most important and effective ones. It aims to identify and choose the features that have the most significant impact

on the target variable or the overall performance of a model. This can be done based on statistical measures or

correlation analysis. For this research paper, a Genetic Algorithm (GA) is applied to reduce the number of

features. After applying each technique, the accuracy of the models is measured to compare their performance.

GA is an algorithm that simulates the natural process of evolution. It involves a crossover process where multiple

generations are combined and iterated until the best generations are obtained. The algorithm aims to optimize a

solution by mimicking the principles of natural selection and genetic inheritance. It functions by employing

bioinspired operators such as crossover, mutation, and selection. Table 2 shows the final number of selected

features by GA feature selection methods in the dataset, which enhances the accuracy of the ML models and

speeds the detection process.

Table 2: No. of selected features
No. of all features 529

No. of features after applying GA 280

Splitting the Dataset

 For training and testing our ML models, we have to split the data set into features

and labels, for that, we removed the result columns, which include the labels, and stored them in a variable, named

”y” and the remaining columns which are the features are stored in a variable ”X”, where we store the selected

features by GA, as shown in Figure 12 Then we divided our dataset into two sets: training and testing sets using

the train test split() function with four parameters. The first and second parameters are the features and labels

which we declared above and the third parameter is test size=0.2, which means 20% of the data will be used for

testing, while the remaining 80% will be used for training. The fourth parameter is random state=42, which sets

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 54 | Page

the random seed to 42 to obtain the same train test split every time. Figure 13 show the number of samples for

training and testing after splitting.

Figure 12: Splitting the dataset

Figure 13: Number of training and testing samples

Machine Learning Classifiers

 The system applies ML models for classification, including SVM and RF. These models are commonly

employed in the field of malware detection due to their effectiveness in handling complex and high-dimensional

feature spaces. These ML models will be trained using labeled data extracted from APK files. The training process

involves adjusting the models’ parameters to minimize prediction errors and optimize their performance. Once

trained, the models will be capable of classifying new APK files as either malware or benign based on the learned

features. All the used ML models are extracted from scikit-learn library. Then, we fit the models to the training

data. Fitting the model involves training it on the training set to learn the relationships between the features and

the label.

• RF: It is a classification algorithm that combines multiple uncorrelated decision tree classifiers. Each tree

independently predicts the class for input values, and the final prediction is made by voting or averaging the

predictions of all the trees. This supervised learning algorithm uses the bagging method to train multiple

decision trees and combines their outputs to achieve more accurate and stable predictions that the data point

falls into that category [11]. Figure 14 shows the code for using RF model.

Figure 14: Code for using RF

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 55 | Page

• SVM: It utilizes a hyperplane in n-dimensional space to separate data into two distinct regions, corresponding

to different classes. The objective is to maximize the margin between these regions. The margin is determined

by the distance between instances of the two classes, with particular emphasis on the closest instances, known

as support vectors. This approach allows us to effectively classify new samples based on their position relative

to the learned hyperplane [12]. Figure 15 shows the code for using SVM model.

Figure 15: Code for using SVM

Evaluation

Evaluation metrics are calculated using four parameters: True Positive (TP), False Negative (FN), False

Positive (FP), and True Negative (TN). These evaluation metrics provide a comprehensive assessment of the

performance of our proposed system by taking into account both correct predictions (TP and TN) and incorrect

predictions (FP and FN). Accuracy measures the overall correctness of the system’s predictions. It is calculated

as shown in the below equation.

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision represents the percentage of correctly classified malware samples out of all samples predicted

as malware. It is calculated as shown in the below equation.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall measures the ability of the malware detection system to correctly identify malware samples. It

represents the percentage of actual malware samples that are correctly classified as malware. It is calculated as

shown in below equation.

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Saving and Loading ML Models

 Because the RF model has the highest accuracy value, we planned to use it for classifying new samples.

To save and load our model, we use the serialization and deserialization techniques provided by the Pickle and

Joblib libraries. After we trained and tested the model, we used the dump() function which saves the model in a

pickle file with a .pkl extension. Joblib.dump() function serializes the model object and writes it to the specified

file. For loading and using the ML model we used joblib.load() function with passing the pkl file. We can then

make predictions on new samples. This is done in order to save time by avoiding the need to retrain the model

every time you want to make predictions on new samples.

Features Extractions

Two types of features are needed for this project from APK files which are shown in Table 3.

Table 3: Types of features

Permissions features

Android applications request various permissions to access certain sensitive resources or data in

order to perform their functional requirements and complete specific actions on a mobile device.

Users have to allow the use of the requested permissions by applications [13]. Malicious apps often
request excessive or unnecessary permissions, which indicates suspicious behavior.

Intents

Intents are a fundamental component of Android’s inter-application communication system [14].

When one activity within an application needs to communicate with another activity, it generates
an intent. An intent serves as a message or request that encapsulates the important information that

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 56 | Page

the sending activity wants to communicate to the receiving activity [15]. By analyzing intent

features, we can explore the communication patterns and potentially malicious activities of an
application.

By combining permission features with intent features, we can leverage the information from both

aspects to enhance the accuracy of your malware detection model. These features are extracted from the APK

files using the SISIK web tool. It is a free online tool that provides a wide range of functionalities and methods

to help in feature extraction and analysis. it extracts the manifast.xml from the APK file. Then we extract

permission and intent from manifast.xml. We used Selenium which is an open-source framework for allowing

Python to interact with web elements such as SISIK.

APK Classification

After extracting the relevant features from the APK file using the SISIK tool, we used

them as input to the ML models. The predict proba() functions is used the final result of the system. It provides

the probability of the input APK file belonging to each class. By using the predict proba() function, we can obtain

additional information beyond just the class labels. For example, if the predicted probabilities for a given APK

file are [0.8, 0.2], it indicates that the model is 80% sure that the file is malware) and 20% confident that it is safe.

GUI

Figure 16 shows the home interface of the system. The only thing that a user does is uploading an APK

file and press the DETECT Button.

Figure 16: Home Interface of the system.

After that, the system will send the APK file to SISIK to decompile and extracting the needed features,

which forces a new web window to open automatically showing the analysis result page in SISIK, as shown in

Figure 17 Then, this window will close, and the final result well be shown to the user.

Figure 17: Analysis result page in SISIK

When the APK file has high probability of being malware, the system will show a warning with the

percentage, as shown in Figure 18. On the other hand, when the APK file looks safe, Figure 19 will be shown.

Figure 18: Malicious APK File

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 57 | Page

Figure 19: Safe APK File

V. Result And Findings
In this section, we explore the result we got during the implementation of research paper. We Compare

the result obtained using bot ML models.

ML Models Evaluation

In this section, we present, compare, and discuss the overall result of the evaluation metric; accuracy,

recall and precision, for both ML models. Moreover, we compare the time taken to train and test by both ML

models. Figure 20 shows the comparison between the accuracy, recall, and precision of RF and SVM models. RF

performs better than SVM, this is because RF is considered ensemble learning that combines multiple DT models

to make a prediction and due to its robustness over overfitting.

Figure 20: Comparison between of RF and SVM models.

After conducting this comparison, we decided to choose the RF model, as it has shown better

performance than SVM. Hence, RF model is saved as pickle file and to used it to detect new samples. Figure 21

shows the time taken by both ML models to train and test. As it appears RF models has the longest time to train,

this is because the training process of the RF model involves building and combining these multiple decision

trees, which can be computationally intensive and result in a longer training time. However, during the test, the

model can make predictions by simply averaging the outputs of the individual decision trees, which require a

shorter time.

Figure 21: Time taken to train and test by both ML

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 58 | Page

Testing the Overall Performance of the System

After the comparison performed in the previous subsection, we conclude that the RF model has shown

better performance than SVM. Our system is considered to be easy to use since the end user does not do any

configuration and should only upload the APK file. The user should not have to worry about the underlying

processes or switch between different tools. The system automatically sends the APK to the SISIK web tool,

extracts the relevant data from the APK file, and then Selenium will take over to return the extracted information

to the system. The ML models will use this information to detect the APK file. In this section, we will test real

and new APK files.

For testing samples, we have collected APK files that were published by developers for test purposes on

some websites. We have tested 2 samples: 1 benign and 1 malware. We send each sample to the SISIK web tool

to be decompiled and analyzed. After that, it returned with a set of features that the APK file requested. We used

them as input to the pickled ML model, which is RF model. Table 4 provides a comparison of the results we

obtained for the real APK file we have tested with the correct type of the file, either malware or safe. The results

indicate the chances of an application being classified as malware or safe. The average time taken to predict a

new sample is 15 seconds. This involves sending the APK file to the SISIK tool to be decompiled and then

analyzed. Then the extracted features are sent back to the system to the pickle file to make a prediction and present

the result to the user.

Table 4: System Result
APK file Actual Type Result obtained for the system

File.apk Malware There are 60 % chances that this app is malware!

SurlyProject.apk Safe There are 99.14 % chances that this app is safe!

VI. Conclusion
With the increasing popularity and widespread use of Android devices, the risk of malicious software

targeting these platforms is also on the rise. Android malware presents substantial dangers to user privacy, data

security, and the overall performance of the devices. In this paper, we proposed an efficient system for identifying

malicious applications based on the features extracted using static malware analysis. Efficient and accurate

Android malware detection not only protects individual users’ privacy and data security but also preserves the

integrity of enterprise networks and sensitive information. By leveraging detection approaches, promoting user

awareness, and implementing security best practices, we can mitigate the risks posed by Android malware and

ensure a secure mobile experience for users.

In this research paper, we leveraged ML models along with permission and intent features extracted from

the APK file to check the probability of being malicious or benign, which could help to either install that APK

file or not. Our finding shows that RF outperforms SVM in accurately classifying APK files. The RF model

achieved an accuracy rate of 98%, indicating its effectiveness in accurately classifying APK files. Our research

paper contributes to the enhancement of malware detection methods for APK files. The high accuracy and

performance of the RF model and the emphasis on testing real-world data highlight the potential effectiveness

and practical applicability of our system.

In the future, we are planning to incorporate the use of explainable ML models in the Android malware

detection field which provides interpretability in the decision-making process and enables users to understand

why a specific prediction or classification is made by ML models. explainable ML models address the block box

issues introduced by some ML models where the users do not know why specific prediction is taken by the ML

models. However, it is important to take into consideration making a balance between interpretability and the

performance of the models.

We believe that there are still more features to be explored and analyzed from Android applications for

malware detection. we will explore the use of other Android features that could be extracted from Android

applications without installing them, such as the inclusion of specific strings in the code comments. Some

developers and programmers leave comments that may contain hints related to their malicious intent.

References
[1]. J. Lee, H. Jang, S. Ha, And Y. Yoon, “Android Malware Detection Using Machine Learning With Feature Selection Based On The

Genetic Algorithm,” Mathematics, Vol. 9, No. 21, 2021.
[2]. N. Peiravian And X. Zhu, “Machine Learning For Android Malware Detection Using Permission And Api Calls,” In 2013 Ieee 25th

International Conference On Tools With Artificial Intelligence, Pp. 300–305, 2013.

[3]. M. Bhatt, H. Patel, And S. Kariya, “A Survey Permission Based Mobile Malware Detection,” International Journal Of Computer
Technology And Applications, Vol. 6, P. 2, 10 2015.

[4]. J. Lee, H. Jang, S. Ha, And Y. Yoon, “Android Malware Detection Using Machine Learning With Feature Selection Based On The

Genetic Algorithm,” Mathematics, Vol. 9, No. 21, P. 2813, 2021.
[5]. N. Tarar, S. Sharma, And R. Challa, “Analysis And Classification Of Android Malware Using Machine Learning Algorithms,” Pp.

738–743, 11 2018.

Android Malware Detection Using Machine Learning

DOI: 10.9790/0661-2703014659 www.iosrjournals.org 59 | Page

[6]. Y. Balcioglu, “Malware Analysis For Effective Android Malware Detection,” In International Anatolian Congress On Scientific
Research, Pp. 1112–1119, Mar. 2023.

[7]. M. Dhalaria And E. Gandotra, “A Framework For Detection Of Android Malware Using Static Features,” In 2020 Ieee 17th India

Council International Conference (Indicon), Pp. 1–7, Ieee, 2020.
[8]. A. Mahindru And A. Sangal, “Mldroid—Framework For Android Malware Detection Using Machine Learning Techniques,” Neural

Computing And Applications, Vol. 33, No. 10, Pp. 5183–5240, 2021.

[9]. V. Kouliaridis, G. Kambourakis, D. Geneiatakis, And N. Potha, “Two Anatomists Are Better Than One—Dual-Level Android
Malware Detection,” Symmetry, Vol. 12, No. 7, 2020.

[10]. N. Z. Gorment, A. Selamat, L. K. Cheng, And O. Krejcar, “Machine Learning Algorithm For Malware Detection: Taxonomy, Current

Challenges And Future Directions,” Ieee Access, 2023.
[11]. J. Lee, H. Jang, S. Ha, And Y. Yoon, “Android Malware Detection Using Machine Learning With Feature Selection Based On The

Genetic Algorithm,” Mathematics, Vol. 9, No. 21, P. 2813, 2021.

[12]. N. Peiravian And X. Zhu, “Machine Learning For Android Malware Detection Using Permission And Api Calls,” In 2013 Ieee 25th
International Conference On Tools With Artificial Intelligence, Pp. 300–305, 2013

[13]. S. Ramachandran, A. Dimitri, M. Galinium, M. Tahir, I. V. Ananth, C. H. Schunck, And M. Talamo, “Understanding And Granting

Android Permissions: A User Survey,” In 2017 International Carnahan Conference On Security Technology (Iccst), Pp. 1–6, Ieee,
2017.

[14]. A. Pathak, “Exploring Android Intents.” Https://Medium.Com/@Myofficework000/Intents-In-Android-713da59ee700. [Accessed

March 8, 2024].
[15]. M. W. Afridi, T. Ali, T. Alghamdi, T. Ali, And M. Yasar, “Android Application Behavioral Analysis Through Intent Monitoring,”

In 2018 6th International Symposiumon Digital Forensic And Security (Isdfs), Pp. 1–8, Ieee, 2018.

