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Abstract:  
This paper focuses on the design of a distributed formation control law for multi-quadrotor systems (MQS), 

utilizing rigidity graph theory and gradient-based formation control laws, and applies these methods to the task 

of tracking and encircling a moving target. The MQS is represented as an undirected graph that is infinitesimally 

and minimally rigid. The control law comprises a formation control protocol and a target tracking and 

encirclement mechanism, ensuring that the formation remains stable during mission execution. To enhance 

efficiency and simplify the design, the leader-follower strategy is utilized. In this approach, the target velocity is 

unknown to all quadrotors, but the leader can determine the relative position of the target and estimate its velocity, 

subsequently transmitting this information to the followers. The proposed control law is validated through 

simulations conducted in three-dimensional space using MATLAB software. The results demonstrate that the MQS 

can successfully establish and maintain the desired formation while tracking and encircling the moving target. 
Key Word: Distributed formation control, multi-quadrotor systems, Rigidity graph theory, Gradient-based 

formation control laws, Moving target. 
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I. Introduction  
Multi-agent formation control involves the design of control inputs for agents to achieve and maintain a 

specific geometric configuration in space. In natural, social, and technological domains, large-scale complex 

systems with multiple agents present significant challenges for centralized formation control, often making its 

application difficult. Consequently, distributed formation control for multi-agent systems has been extensively 

researched due to its ease of implementation, strong self-organizational capabilities, and robustness. In 

engineering applications, multi-agent systems are frequently represented by groups of autonomous vehicles, such 

as unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), unmanned underwater vehicles 

(UUVs), etc., which are employed in tasks like tracking, surveillance, mapping, and disaster monitoring. 

Specifically, for missions such as tracking and encircling aerial targets with UAVs, the multi-quadcopter system 

(MQS), known for its maneuverability and flexibility, is the most suitable choice. Figure 1 illustrates the 

distributed formation of a MQS tracking and encircling a moving target, which is an intruding quadrotor. 

 

 
Figure 1. The distributed formation of a MQS tracking and encircling a moving target 

 

From a mathematical standpoint, the formation control technique is developed based on mathematical 

concepts from graph theory and consensus dynamics [1]. In this framework, graph theory serves as an effective 

tool for describing the formation shape of the MQS in space, as well as the sensing, communication, and control 
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topologies between agents in a distributed system. For coordination among agents, each agent must exchange 

information with its neighboring agents to achieve consensus on common objectives. In formation control 

problems, the control variables can be absolute position, relative position, or the distance between quadrotors [2]. 

Rigid graph theory ensures that distance constraints between quadrotors in the desired formation are maintained 

through the rigidity matrix of the graph, thereby ensuring that they avoid collisions during the formation process. 

A significant advantage of using the distance as a control variable is that it can be determined through local 

deviation vectors and is independent of reference frames, unlike methods relying on consensus algorithms. In 

distance-based formation control, which utilizes relative displacements under misaligned orientations as sensing 

variables and distances as control variables, the most effective method is the gradient-based approach. Gradient-

based formation control laws employ a potential function to generate local controllers for distributed agents. In 

this approach, the gradient of the potential function must lead the distributed formation controller, making the 

selection of an appropriate potential function crucial. If the potential function is defined based on the distance 

errors between neighboring quadrotors, each quadrotor can implement a control law to minimize the potential 

function, via the local coordinate frame. Moreover, selecting the appropriate control strategy for the task is crucial 

in the design of formation control for MQS. Formation control includes three main strategies: behavior-based 

strategy [3, 4], leader-follower strategy [5, 6], and virtual structure strategy [7, 8]. The leader-follower strategy is 

highly dependent on the accuracy and stability of the leader agent, but for target tracking tasks, particularly with 

aerial moving targets, this strategy shows its strength through its simple design process and ease of implementation 

[5, 9]. 

Motivated by recent advancements and research trends in formation control for MQS based on distance 

variables, this paper focuses on developing a distributed formation control algorithm grounded in rigid graph 

theory, applied to the task of tracking, and encircling a moving target while maintaining a predefined formation. 

The MQS is represented as a formation graph characterized by infinitesimal and minimal rigidity. The leader-

follower strategy is employed, where all quadrotors lack direct information about the target's velocity. However, 

the leader can determine the relative position and estimate the target's velocity, subsequently transmitting this 

information to the other quadrotors in the formation. The formation control law is designed to stabilize the 

dynamics of inter-quadrotor distances, ensuring that the quadrotors maintain the desired formation. Consequently, 

the proposed control law incorporates both a formation stabilization component and a tracking and encircling 

component to effectively follow the moving target. 

The structure of this paper is organized as follows: Section 2 provides a preliminary on the graph theory, 

graph rigidity, and the quadrotor model. Section 3 outlines the design process of the distributed formation control 

law for formation control and the tracking and encircling of the moving target. Section 4 presents MATLAB 

simulation results that validate the proposed control law, demonstrating the ability of the system to maintain the 

desired formation while tracking and encircling a moving target in three-dimensional space. Finally, Section 5 

concludes with a discussion and the future directions for this area of research. 

 

II. Preliminaries 
Graph Theory 

 A graph is used to describe the communication relationship between agents. The basics of graph theory 

given in this section are adopted from [10]. This relationship between "𝑛" agents can be denoted by a directed or 

undirected graph. In this study, we focus exclusively on undirected graphs and will henceforth omit the term 

"undirected" when referring to graph. Define a graph  𝒢 = (𝒱, ℰ,𝓐) where 𝒱 = {𝑣1, 𝑣2, … , 𝑣𝑛}  is the set of all 

vertices that represented for agents,  ℰ ⊆ {(𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 , 𝑣𝑗 ∈ 𝒱, 𝑖 ≠ 𝑗} is the set of all edges between the vertices, 

and 𝓐 = [𝑎𝑖𝑗] ∈ ℝ
𝑛×𝑛 is the weighted adjacency matrix with nonnegative entries and defined as  

𝑎𝑖𝑗 = {
1,     if (𝑖, 𝑗) ∈ ℰ   
0,     otherwise     

      𝑎𝑖𝑗 = 𝑎𝑗𝑖 , 𝑖 ≠ 𝑗 , 𝑎𝑖𝑖 = 0                            (1) 

The cardinality of |𝒱| = 𝑛, and |ℰ| = 𝑚. A graph 𝒢 is considered connected if there exists a path between 

every pair of vertices. A graph 𝒢 is said to be a complete graph if every pair of distinct vertices is connected by 

an edge, i.e., 𝑚 = 𝑛(𝑛 − 1)/2. Let the degree matrix of a graph 𝒢 be denoted as 𝒟 = diag {𝑑𝑖} ∈ ℝ
𝑛×𝑛, where 

the degree of vertex 𝑖 is 𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑗∈𝒩𝑖
. The neighbors of the 𝑖𝑡ℎagent is defined as 𝒩𝑖 = {𝑣𝑗|(𝑣𝑖 , 𝑣𝑗) ∈ ℰ}.  

A framework is a realization of a graph at given points in Euclidean space. Specifically, if 𝑝𝑖 ∈ ℝ
𝑑 (𝑑-

dimensional Euclidean space) is the position values of agents 𝑖 with respect to some fixed coordinate frame 

and 𝒑 = [𝑝1, … , 𝑝𝑛]
𝑇 ∈ ℝ𝑑𝑛 is a configuration of 𝑛 agents, then a framework 𝐹 is a pair 𝐹(𝒢, 𝒑).  

 

Graph rigidity theory 

 Rigidity theory studies the conditions required for a framework to have a unique realization, where the 

formation constraints between neighboring agents are defined by some scalar or vector magnitude. When these 

constraints are represented as distances in an undirected graph, the theory is called graph rigidity. An effective 
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method for determining whether a given framework is distance-rigid is the linear algebra approach, which involves 

examining the rank of the rigidity matrix. This matrix is derived from the conditions of infinitesimal and minimal 

rigidity, providing a mathematical tool to assess the system's rigidity. 

 

From the length of the edges in a framework 𝐹(𝒢, 𝒑), the edge function is defined as 

𝒉𝒢(𝒑) ≜ [… , ‖𝑝𝑖 − 𝑝𝑗‖
2
, … ]

𝑇

,        (𝑖, 𝑗) ∈ ℰ                                       (2) 

In the case where two frameworks are congruent, then they are said to be isomorphic in ℝ𝑑, and the set 

of all frameworks that are isomorphic to 𝐹 is denoted by the symbol Iso(𝐹). Additionally, if two frameworks are 

equivalent but not congruent, then they are said to be ambiguous, and the set of all ambiguities of framework 𝐹 is 

denoted by Amb(𝐹). A subset of rigidity called infinitesimal rigidity [11], in which the first-order preservation of 

distances has remained during an infinitesimal motion. The rigidity matrix 𝓡(𝒑) ∈ ℝ𝑚×𝑑𝑛 of the 

framework  𝐹(𝒢, 𝒑) is defined as: 

𝓡(𝒑) =
1

2

𝜕𝒉𝒢(𝒑)

𝜕𝒑
                                                                                  (3) 

Based on the rigidity matrix 𝓡(𝒑), a framework 𝐹 = (𝒢, 𝒑) is infinitesimally rigid in ℝ𝑑  if and only if  

𝑟𝑎𝑛𝑘(𝓡(𝒑)) = 𝑑𝑛 −
𝑑(𝑑 + 1)

2
.                                                                      (4) 

A graph is minimally rigid if it is rigid, and the removal of any edge causes the graph to lose its rigidity 

[11]. We can check the condition for minimal rigidity of the graph by the condition of the following result. A rigid 

graph 𝒢 is minimally rigid in ℝ𝑑 if and only if 

𝑚 = 𝑑𝑛 −
𝑑(𝑑 + 1)

2
 .                                                                                (5) 

If 𝐹(𝒢, 𝒑) is infinitesimally and minimally rigid, i.e., 𝑚 =  𝑟𝑎𝑛𝑘(𝓡(𝒑)) = 𝑑𝑛 − (𝑑(𝑑 + 1))/2 then its 

rigidity matrix is full row rank, and (𝓡(𝒑)𝓡𝑇(𝒑)) is the positive definite matrix. 

 

Quadrotor model  

 
Figure 2. Quadrotor configuration frame scheme of 𝑖𝑡ℎ quadrotor 

 

In this section, we analyze the dynamic model of the 𝑖𝑡ℎ quadrotor in a MQS consisting of 𝑛 quadrotors. 

The quadrotor is an underactuated mechanical system with six DOFs and four control inputs. These six DOFs 

include translational motion in three directions and rotational motion around the three axes. Each of the quadrotor's 

propellers, driven by a motor, is mounted at the end of two cross-shaped frames. To describe the quadrotor's 

position and orientation, both the inertial frame and the body-fixed frame are utilized. The coordinate system for 

the quadrotor is illustrated in Figure 2, where the inertial frame is represented by 𝐸 = (𝑋𝐸 , 𝑌𝐸 , 𝑍𝐸) and the body-

fixed frame 𝐵 = (𝑋𝐵 , 𝑌𝐵 , 𝑍𝐵). The inertial frame is based on the Earth with the origin coinciding with the origin 

of the body-fixed frame before the quadrotor take-off. The body-fixed frame is fixed with the quadrotor with its 

origin located at the center of mass of the vehicle.   

Define the positions and velocities in frame 𝐸 of the 𝑖𝑡ℎ quadrotor as 𝒑𝑖 = [𝑝𝑥𝑖 , 𝑝𝑦𝑖 , 𝑝𝑧𝑖]
𝑇
and 𝝊𝑖 =

[𝜐𝑥𝑖 , 𝜐𝑦𝑖 , 𝜐𝑧𝑖]
𝑇
 respectively. The attitude of the 𝑖𝑡ℎ quadrotor defined in frame 𝐸 is described by three Euler angles 

𝜼𝑖
𝐸 = [𝜙𝑖 , 𝜃𝑖 , 𝜓𝑖]

𝑇  where 𝜙𝑖, 𝜃𝑖and 𝜓𝑖  denote the angles of roll, pitch, and yaw, respectively. The angular velocity 

in frame E is expressed as 𝜼̇𝑖
𝐸 = [𝜙̇𝑖 , 𝜃̇𝑖 , 𝜓̇𝑖]

𝑇
.Then, the angular velocity 𝜔𝑖

𝐵 = [𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖]
𝑇 of the 𝑖𝑡ℎ quadrotor 

with respect to frame 𝐵 is written as: 

𝝎𝑖
𝐵 = [

𝑝𝑖
𝑞𝑖
𝑟𝑖
] = 𝒯𝐸

𝐵𝜼̇𝑖
𝐸 = [

1 0 − sin 𝜃𝑖
0 cos𝜙𝑖 cos 𝜃𝑖 sin 𝜙𝑖
0 − sin𝜙𝑖 cos 𝜃𝑖 cos 𝜙𝑖

] [

𝜙̇𝑖
𝜃̇𝑖
𝜓̇𝑖

]                                      (6) 

where 𝒯𝐸
𝐵 is the transformation matrix for the angular velocity from frame 𝐸 to frame 𝐵.  

The dynamics of 𝑖𝑡ℎ quadrotor with a translational motion and a rotational motion is given by as follows:    
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{
 
 

 
 
𝒑̇𝑖(𝑡) = 𝒗𝑖(𝑡)                                             

𝑚𝑖𝒗̇𝑖(𝑡) = 𝑼𝑖
𝐹(𝑡) − 𝑮𝑖

𝐸                            

𝜼̇𝑖
𝐸(𝑡) = 𝒯𝐵

𝐸𝝎𝑖
𝐵(𝑡)                                     

𝑰𝑖
𝐵𝝎̇𝑖

𝐵(𝑡) = −𝝎𝑖
𝐵(𝐼𝑖

𝐵 ×𝝎𝑖
𝐵(𝑡)) + 𝝉𝑖(𝑡)

                                        (7) 

where 𝑚𝑖 is the mass of the 𝑖𝑡ℎ quadrotor, the virtual control input 𝑼𝑖
𝐹 = 𝓡𝑖𝐵

𝐸
𝑇𝑖
𝐵 = 𝑇𝑖𝓡𝑖𝐵

𝐸𝒆𝟑, 𝒆3 = [0, 0, 1]𝑇. 

 𝐺𝑖
𝐸 = [0 0 𝑚𝑖𝑔]

𝑇 is gravity, 𝝉𝑖 ∈ ℝ
3×1 and  𝑇𝑖 ∈ ℝ

1×1  are the control torque and the total lift generated by 

the rotors of the 𝑖𝑡ℎ quadrotor.  

The rotation matrix 𝓡𝑖𝐵
𝐸  is described as follows:  

𝓡𝑖𝐸
𝐵 = [

cos 𝜃𝑖 cos𝜓𝑖 cos 𝜃𝑖 sin𝜓𝑖 −sin 𝜃𝑖
sin𝜙𝑖 sin 𝜃𝑖 cos 𝜓𝑖 − cos𝜙𝑖 sin𝜓𝑖 sin 𝜙𝑖 sin 𝜃𝑖 sin 𝜓𝑖 + cos𝜙𝑖 cos𝜓𝑖 sin 𝜙𝑖 cos 𝜃𝑖
cos 𝜙𝑖 sin 𝜃𝑖 cos 𝜓𝑖 + sin𝜙𝑖 sin𝜓𝑖 cos 𝜙𝑖 sin 𝜃𝑖 sin𝜓𝑖 − sin𝜙𝑖 cos𝜓𝑖 cos𝜙𝑖 cos 𝜃𝑖

] (8) 

In general, a MQS emphasizes the consistency and stability of the position and velocity of quadrotors. 

Therefore, this study primarily focuses on translational motion and the design of a distributed formation controller 

for this motion. The translational motion of the 𝑖𝑡ℎ quadrotor can be described under the double-integrator model 

as follows: 

{
𝒑̇𝑖(𝑡) = 𝒗𝑖(𝑡) 

𝒗̇𝑖(𝑡) = 𝒖𝑖(𝑡)
        𝑖 = 1,2, … , 𝑛                                           (9) 

From (7) and (9), the control signal  𝒖𝑖 = [𝑢𝑥𝑖 , 𝑢𝑦𝑖, 𝑢𝑧𝑖]
𝑇
is expressed as follows: 

𝒖𝑖(𝑡) =
𝑼𝑖
𝐹

𝑚𝑖

 −  𝑔𝒆𝟑                                                                      (10) 

 

III. Distributed Formation Control Design  
The desired formation is an infinitesimally and minimally rigid framework 𝐹∗ = (𝒢∗, 𝒑∗), In which, 𝒢∗ =

(𝒱∗, ℰ∗), 𝒑∗ = [𝑝1
∗𝑇 , … , 𝑝𝑛

∗𝑇]
𝑇
. The distance between quadrotors is 𝑑𝑖𝑗(𝑡) = ‖𝑝𝑖(𝑡) − 𝑝𝑗(𝑡)‖. The desired 

distance between quadrotors is 𝑑𝑖𝑗
∗ = ‖𝑝𝑖

∗ − 𝑝𝑗
∗‖ > 0, 𝑖, 𝑗 ∈ 𝒱∗.  

 

Formation control protocol 

Design the first design task of this study to ensure that the quadrotors form and maintain a predefined 

geometric configuration in space. The control objective for this formation problem serves as the common and 

foundational objective for the other tasks. This objective is to design 𝑢𝑖 such that: 

𝑑𝑖𝑗(𝑡) → 𝑑𝑖𝑗
∗  as 𝑡 → ∞  𝑖, 𝑗 ∈ 𝒱∗                                                 (11) 

The control objective for this problem which forms and maintains formation of MQS is to design 𝑢𝑖 =

𝑓(𝑝𝑖 − 𝑝𝑗 , 𝑑𝑖𝑗
∗ ), 𝑖 = 1,2, … , 𝑛, ∀𝑗 ∈ 𝑁𝑖.  

Eq. (9) is equivalent to: 

𝒉𝒢(𝒑(𝑡)) ⟶ 𝒉𝒢(𝒑
∗) as 𝑡 ⟶ ∞                                            (12) 

Define the relative position 𝑧𝑖𝑗  as   

𝑧𝑖𝑗 = 𝑝𝑖 − 𝑝𝑗                                                                           (13) 

Let the distance-error 𝑒𝑖𝑗 is given by 

𝑒𝑖𝑗 = ‖𝑧𝑖𝑗‖ − 𝑑𝑖𝑗
∗ = 𝑑𝑖𝑗 − 𝑑𝑖𝑗

∗                                                  (14) 

Let the error 𝑒̅𝑖𝑗 is given by 

𝑒̅𝑖𝑗 = ‖𝑧𝑖𝑗‖
2
− (𝑑𝑖𝑗

∗ )
2
= 𝑑𝑖𝑗

2 − (𝑑𝑖𝑗
∗ )

2
                                    (15) 

𝒛 = [… , 𝑧𝑖𝑗
𝑇 , … ]

𝑇
∈ ℝ𝑑𝑚, 𝒆 = [… , 𝑒𝑖𝑗 , … ]

𝑇
∈ ℝ𝑚,  𝒆̅ = [… , 𝑒̅𝑖𝑗 , … ]

𝑇
∈ ℝ𝑚, (𝑖, 𝑗)  ∈ ℰ 

From Eq. (2) and Eq. (15), we have that  

𝒆̅ = [… , 𝑒̅𝑖𝑗 , … ]
𝑇
= 𝒉𝒢(𝒑) − 𝒉𝒢(𝒑

∗)                                     (16)  

Eq. (16) can be rewritten by  

 𝑒̅𝑖𝑗 = 𝑒𝑖𝑗(𝑒𝑖𝑗 + 2𝑑𝑖𝑗
∗ )                                                              (17) 

It is not difficult to see that 𝑒𝑖𝑗 ≥ −𝑑𝑖𝑗
∗  and 𝑒̅𝑖𝑗 = 0 if and only if 𝑒𝑖𝑗 = 0. 

Consider the potential function: 

𝓛(𝒆) =
1

4
∑ 𝑒̅𝑖𝑗

2

(𝑖,𝑗)𝜖𝜀∗

=
1

4
‖𝒆̅‖2 =

1

4
‖𝒉𝒢(𝒑) − 𝒉𝒢(𝒑

∗)‖
2
                                 (18) 

This function is positive definite in 𝒆, continuously differentiable, and radially unbounded. The time 

derivative of  𝓛(𝒆), we have that 
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𝓛̇ =
1

4

𝑑

𝑑𝑡
(‖𝒉𝒢(𝒑) − 𝒉𝒢(𝒑

∗)‖
2
) =

1

2
𝒆̅𝑇
𝑑 (𝒉𝒢(𝒑))

𝑑𝑡
 

  = 𝒆̅𝑇𝓡(𝒑)𝒖𝑓                                                            (19) 

where 𝒖𝑓 = [𝒖𝑓1, … , 𝒖𝑓𝑛]
𝑇
∈ ℝ𝑑𝑛. 

Given the formation framework 𝐹(𝑡) = (𝒢∗, 𝒑(𝑡)) and let the initial conditions be such that 𝑒(0) = 𝒞1 ∩
𝒞2, 𝒆 ∈ ℝ𝑚, 

𝒞1 = {𝛶(𝐹, 𝐹
∗) ≤  𝜀 }                                                                     (20) 

𝒞2 = {dis𝑡(𝒑, Iso(𝐹∗)) < 𝑑𝑖𝑠𝑡(𝒑, Amb(𝐹∗)) }                                (21) 

Taking the gradient of 𝓛(𝒆), the formation control law is designed as:  

𝒖𝑓 = −𝛻(𝓛(𝒆)) = − [
𝜕𝓛(𝒆)

𝜕𝒑
]
𝑇

= −𝑘𝑝𝓡
𝑇(𝒑)𝒆̅                                    (22) 

where 𝑘𝑝 > 0 is a control gain. 

This formation control law makes 𝓛̇ in Eq. (19) negative definite and will be embedded in the tracking 

control law. The condition in Eq. (20) is a sufficient constraint for the formation framework 𝐹(𝑡) to remain 

infinitesimally rigid. The condition in Eq. (21) guarantees that 𝐹(𝑡) is closer to a framework in 𝐼𝑠𝑜(𝐹∗) at 𝑡 = 0 

than to one in Amb(𝐹∗) to prevent converging to an ambiguous framework. The formation control law for each 

quadrotor can be expressed as: 

𝒖𝑓𝑖 = −𝑘𝑝 ∑𝑧𝑖𝑗  𝑒̅𝑖𝑗
𝑗𝜖𝑁𝑖

                                                                        (23) 

 

Target tracking and encirclement mechanism 

The second design task of this study is as follows: The quadrotors track and encircle a moving target with 

a predefined formation. In this problem, we employ the leader-followers strategy by taking the 𝑛𝑡ℎ quadrotor to 

be the leader while the other quadrotors are followers. The control protocol includes: Acquiring a desired 

formation 𝐹∗, the leader agent chasing the target, and the followers tracking and surrounding the leader while 

maintaining the desired formation 𝐹∗. Let the target position is denoted as 𝒑𝑇(𝑡) ∈ ℝ
𝑑, and the second objective 

is then expressed as: 

𝒑𝑇(𝑡) ∈ conv{𝒑1(𝑡) , 𝒑𝟐(𝑡), … , 𝒑𝑛−1(𝑡)} as 𝑡 → ∞                               (24) 

In the second problem, we assume that the target velocity 𝒗𝑇 ∶= 𝒑̇𝑇 is unknown to all quadrotors. 

However, the leader (𝑛𝑡ℎ quadrotor) can measure the target’s relative position 𝒛𝑇 = 𝒑𝑇 − 𝒑𝑛 and communicate 

this information to all followers. The control objective for tracking and encirclement the moving target with a 

desired formation is to design 𝒖𝑖 = 𝑓(𝑧𝑖𝑗 , 𝑑𝑖𝑗
∗ , 𝒛𝑇 , 𝒗̂𝑇), where 𝒗̂𝑇 is the target velocity estimate value that generated 

by the continuous dynamic estimation mechanism [12] 

𝒗̂𝑇(𝑡) = ∫ [𝑘1𝒛𝑇(𝜏) + 𝑘2𝑠𝑔𝑛(𝒛𝑇(𝜏))]𝑑𝜏                                           (25)
𝑡

0

 

where 𝑘1, 𝑘2 > 0 are control gains.  

Consider the formation framework 𝐹(𝑡) = (𝐺∗, 𝒑(𝑡)) and let the initial conditions be such that 𝒆(0) =
𝒞1 ∩ 𝒞2 given in Eq. (20) and Eq. (21).  

The tracking formation control law 𝒖 ∈ ℝ𝑑𝑛 is designed as 

𝒖 = 𝒖𝑓 + 𝟏𝑛⊗𝒉                                                       (26) 

where 𝒖𝑓 ∈ ℝ
𝑑𝑛 was defined in Eq. (22), the term 𝒉 ∈ ℝ𝑑 is given by  

𝒉 = 𝑘1𝒛𝑇 + 𝒗̂𝑇 − 𝒖𝑓𝑛                                                 (27) 

The control law 𝒖 in Eq. (26) has two components: 𝒖𝑓 ensures the formation problem while 𝒉 guarantees 

tracking and encircling a moving target. This makes 𝒆 = 0 exponentially stable and ensures Eq. (11) and Eq. (24) 

are satisfied. 

From Eq. (26) and Eq. (27), the leader quadrotor control input 𝑢𝑛 ∈ ℝ
𝑑 is 

𝒖𝑛 = 𝑘1𝒛𝑇 + 𝑣̂𝑇                                                              (28) 

and the follower 𝑖𝑡ℎ quadrotor control input 𝑢𝑖 ∈ ℝ
𝑑  is 

𝒖𝑖 = 𝒖𝑓𝑖 + 𝒉    

     = −𝑘𝑝 ∑𝑧𝑖𝑗  𝑒̅𝑖𝑗
𝑗𝜖𝑁𝑖

+ 𝑘1𝑧𝑇 +∫ [𝑘1𝒛𝑇(𝜏) + 𝑘2𝑠𝑔𝑛(𝒛𝑇(𝜏))]𝑑𝜏 − 𝒖𝑓𝑛                                 (29)
𝑡

0

 

where 𝒖𝑓𝑖 = −𝑘𝑝 ∑ 𝑧𝑖𝑗  𝑒̅𝑖𝑗𝑗𝜖𝑁𝑖
 (𝑖 = 1,… , 𝑛 − 1 ) and  𝒖𝑓𝑛 = −𝑘𝑝 ∑ 𝑧𝑛𝑗  𝑒̅𝑛𝑗𝑗𝜖𝑁𝑛  

It can be observed that the follower control law is distributed, as it depends on its relative position to 

neighboring quadrotors, the target's relative position, and the formation control of the leader. 
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IV. Simulation Results 

The experiment involved a MQS with 6 quadrotors: quadrotor 6 acts as the leader, responsible for 

tracking a moving target, while the 5 quadrotors function as followers, tasked with encircling the leader and 

maintaining the desired formation. In the desired formation, the five vertices of the pentagon represent the 

followers and the vertex at the center represents the leader. The desired formation was designed infinitesimally 

and minimally rigid framework. From Eq. (5), we have that the minimal number of edges 𝑚 = 12. Accordingly, 

the desired topology was established up by the adjacency matrix 𝓐 ∈ ℝ6×6 was derived from Eq. (1). The desired 

formation of MQS in three-dimensional space is shown in Figure 3. The rigidity matrix 𝓡(𝒑) ∈ ℝ12×18 is derived 

from Eq. (3) and applied to the formation control laws. 

 

 
Figure 3.   The desired formation in three-dimensional space 

The desired inter-follower distances of followers are:  

𝑑12
∗ = 𝑑15

∗ = 𝑑23
∗ = 𝑑34

∗ = 𝑑45
∗ = 2 sin

𝜋

5
  ;  𝑑13

∗ = 𝑑14
∗ = √2(1 + cos(𝜋/5)                     (30) 

 

The desired leader-follower distances are 

𝑑16
∗ = 𝑑26

∗ = 𝑑36
∗ = 𝑑46

∗ = 𝑑56
∗ = 1                                                             (31) 

The initial conditions of all quadrotors are randomly selected by 𝑝𝑖(0) = 𝑝𝑖
∗ + (rand(0,1,0) − 𝐼30.5). 

𝑣𝑖(0) = 2[rand(0,1,0) − 0.5𝐼3]  The control gains: 𝑘𝑝 = 1, 𝑘1 = 2, and 𝑘2 = 2. The velocity of the target was 

set up 𝑣𝑇 = [0, 1, 𝑠𝑖𝑛 𝑡], this value is not provided for all four-rotor aircraft in the control law. The target initial 

position 𝑝𝑇(0) = [0,2,0]. 
 

 
Figure 4.   Distance errors 𝑒𝑖𝑗(𝑡) 

 

 

 

 
Figure 5.   Control inputs 𝑢𝑖𝑥(𝑡), 𝑢𝑖𝑦(𝑡) and 𝑢𝑖𝑧(𝑡) 
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Figure 6. The formation F(t) tracks and encircles the moving target while maintaining the desired formation 

 

The simulation results presented in Figure 4 show that the distance errors 𝑒𝑖𝑗(𝑡), converge to zero. This 

indicates that the MQS successfully achieves and maintains the desired formation throughout the process of 

tracking and encircling the moving target. Figure 5 illustrates that the control inputs of each quadrotor, 𝑢𝑖 =

[𝑢𝑖𝑥, 𝑢𝑖𝑦 , 𝑢𝑖𝑧] converge to 𝑣𝑇 = [0,1, 𝑠𝑖𝑛 𝑡], even though the quadrotors in the formation do not have direct access 

to the target's velocity information. This result highlights the effectiveness of the proposed control algorithm in 

estimating and tracking the target's trajectory, with the quadrotors adjusting their control inputs to align with the 

target's motion profile.  

The results shown in Figure 6 illustrate the process of formation, tracking, and encircling a moving target 

using the proposed control laws in three-dimensional space. The leader follows the trajectory of the moving target, 

while the followers track and encircle the target according to the desired formation. Throughout the entire 

movement, the formation remains intact, demonstrating that the proposed control laws effectively preserve the 

formation without any distortion during the process. 

 

V. Conclusion  
This study introduces the distributed formation control law in the design for multi-quadrotor systems 

based on rigid graph theory, applied to tracking, and encircling a moving target. The formation is represented as 

an undirected graph with differential distance rigidity and minimal rigidity. Consequently, the control law is 

developed based on the rigidity matrix to drive the distances between quadrotors toward the desired formation 

distances. The control law consists of two components: the formation control protocol and the target tracking and 

encircling control mechanism. The first control component is highly distributed, as it depends solely on the 

quadrotor’s information and the information from neighboring quadrotors. In contrast, the second control 

component requires information transmitted from the leader to the followers; however, it still maintains the 

properties of a distributed group controller since the leader is also considered a neighbor of the other quadrotors. 

The proposed control algorithm has been validated for its effectiveness through simulation results in a three-

dimensional space using MATLAB. 

Future research in this area could explore the integration of dynamic and time-varying environments into 

formation control algorithms, enhancing the system's adaptability to real-world scenarios. Additionally, 

incorporating communication constraints and limited sensing capabilities could further improve the robustness of 

MQS. 
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