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Abstract:  
Understanding mechanisms of diseases, improving diagnosis, and identifying therapeutic targets have been 

indicated to rely on microbe-disease associations. However, determining these associations by traditional 

experiments methods is costly, laborious and tedious. Therefore, it is needed to have computational approaches 

for unveiling microbe-disease interactions. In this paper, we proposed new approach which combines a weighted 

K nearest known neighbors (WKNKN) algorithm to address the issue of sparsity of the examined datatset and 

multiple kernel-based graph attention networks to expose latent microbe-disease relationships. It also 

incorporates multi-similarity integration to improve performance of prediction. It reaches a remarkable 

performance demonstrating by the averaged AUC and AUPR equaling to 0.985 and 0.968, respectively, which 

come from results of the 10-fold cross validation experiments on the examined HMDAD dataset. These value are 

more forceful when comparing to some state-of-the-art approaches on same examined HMDAD dataset. Thereby, 

it might be recognized as a prominent tool for determining microbe-disease associations. 
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I. Introduction 
Microbe communities are tiny living things that can live in multicellular colonies or singlecelled 

organisms [1]. This varied group closely interacts with human hosts including bacteria, fungi, viruses, archaea, 

and protozoa, and so forth [2]. These microbial populations are found in the gastrointestinal system, skin, lungs, 

oral cavity and other organs [3]. Although the majority of microorganisms are helpful or beneficial, forming 

mutualistic associations with their hosted human bodies. However, disruptions in microbial balance have been 

increasingly linked to different diseases such as inflammatory bowel disease, liver disorders, diabetes  and certain 

cancers [4]–[7]. In recent years, the critical roles of these microorganisms have been indicated in many studies, 

but a thorough understanding of their mechanisms in health and disease remains limited [2]. Examining microbe-

disease interactions is essential not only for uncovering the complex mechanisms of disease progression but also 

for revealing biomarkers that could enhance diagnosis and prognosis [5]. Traditional laboratory experiments for 

determining associations between microbes and diseases are laborious, costly and tedious. Therefore, 

computational approaches leveraging machine learning, deep learning, and large-scale biological data have 

emerged as effective alternatives, driving significant methodological advances in this field. They can generally 

be categorized into the groups listed below: network-based, matrix factorization-based and neural network-

based  methods [8]. 

First of all, network-based methods are popular because of their simplicity, interpretability, and reliance 

on fewer parameters. However, their predictive accuracy is constrained by the availability of known associations, 

limiting their applicability to new diseases or microbes with no prior connections in the network. Notable methods 

in this category include a KATZHMDA model, presented by Chen et al. [9], which utilizes heterogeneous 

networks for identifying microbe–disease associations. Another prominent ABHMDA method fuses microbial 

similarity based on symptom-based disease similarity combining with Gaussian interaction profile for 

constructing training sample features [10]. A new method LGRSH which developed by Lei et al. [11] utilizes an 

enhanced rule-based inference and a node2vec algorithm to uncover microbe-disease interactions. 

Second, matrix factorization-based methods intend to fall apart an input matrix into two lower-

dimensional matrices whereas maintaining the original structure's essential properties. These approach allow for 

better generalization and prediction of new associations. For instance, Peng et al. [12] created a RNMFMDA 
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approach combining a matrix factorization technique of neighborhood-regularized logistic and a random walk 

with restart algorithm in order to forecast microbe–disease interactions. Another significant contribution is 

CMFHMDA method which utilizes collaborative matrix factorization for recovering matrix of microbe-disease 

associations [13]. Despite enabling novel association prediction, matrix factorization methods often yield 

suboptimal performance due to limited data representation from simplistic similarity aggregation. 

Lastly, neural network-based methods have demonstrated superior performance compared to traditional 

approaches, offering higher prediction accuracy and the capacity to model complex relationships. One of the most 

notable frameworks is GATMDA, introduced by Long et al. [14], which predicts microbe–disease relationships 

using an inductive matrix completion  technique and graph attention network (GAT). By incorporating attention 

mechanisms, GATMDA identifies the most relevant nodes and edges in the graph, thereby enhancing predictive 

accuracy. Another innovative model called MVGCNMDA, which was created by Hua et al [15]. MVGCNMDA 

enhances performance via multi-view graph attention. Normally, neural network-based methods excel in 

predictive accuracy due to their ability to model complex relationships in large datasets. Nevertheless, their 

reliance on latent representations reduces model interpretability. 

Notably, all these groups of approaches face challenges posed by the sparsity and incompleteness of 

microbe–disease datasets, which hinders the robustness and generalizability of predictive models. Recently, a 

WKNKN algorithm and a Collaborative Filtering (CF) have been employed to solve the issue of sparsity between 

biological objects [16]–[18].  Additionally, as a prominent deep learning model, GAT has demonstrated its 

effectiveness in divergent graph-based tasks including text classification, link prediction and recommender 

systems. It represents microbe–disease interactions as a graph, where microbes as well as diseases are modeled 

as nodes while their associations form edges. By dynamically assigning attention weights to nodes and edges, 

GAT captures complex, non-linear relationships, enabling more accurate predictions [14]. For instance, Wang et 

al. [7] created a MKGAT framework, which integrates GAT with dual Laplacian regularized least squares for 

revealing associations. Additionally, the GATMDA model, introduced by Long et al. [14], utilizes GAT combined 

with inductive matrix completion for unveiling microbe-disease associations. 

In this paper, to mitigate the issue of data sparsity and leverage the advancements of GATs in order to 

infer microbe-disease associations, we proposed a new method which combines a WKNKN algorithm and 

multiple kernel-based graph attention networks. The WKNKN algorithm imputes missing links by leveraging the 

similarity of neighboring nodes, thereby enriching the dataset with plausible associations. The integration of GAT 

with WKNKN creates a more robust prediction framework, allowing the model to generalize better performance 

which was demonstrated by AUC and AUPR values of 0.985 and 0.968, respectively. It could be recognized as 

an effective method for uncovering microbe-disease interactions. 

 

II. Material And Methods 
Materials 

We utilized a benchmark dataset named HMDAD to assess the prediction performance. It was gathered 

from the Human Microbe–Disease Association Database (HMDAD, https://www.cuilab.cn/hmdad). The dataset 

was used in many studies including Huang et al., Wu et al. and Liu et al. [19]–[21]. It contains 450 known 

interactions between 292 microbes and 39 diseases. In this paper, we used Nm and Nd to reflects the microbe 

number and disease quantity, respectively, and an adjacency matrix 𝐴𝑀𝐷 ∈ 𝑅𝑁𝑚 × 𝑁𝑑 is considered to the known 

microbe-disease association, in which each item 𝐴𝑀𝐷(𝑖, 𝑗)   ∈  {0,1},  Nm indicates microbes’ quantity while Nd 

represents the diseases’ number. In case that a microbe has been etablished to be related to a particular disease, 

the 𝐴𝑀𝐷(𝑖, 𝑗) at the respective position is set to 1, otherwise 𝐴𝑀𝐷(𝑖, 𝑗) = 0. Addionally, we used the microbe 

functional similarity which was calculated by Kamneva et al. [22] and was downloaded from the work of Liu et 

al.[21]. Additionally, we denoted the microbe functional similarity matrix as 𝑆𝑖𝑚
𝑓𝑢𝑛

 that 𝑆𝑖𝑚
𝑓𝑢𝑛

(mi, mj) represents 

the microbe mi and microbe mj similarity. In addition, it was founded on a presumption that similar diseases likely 

to relate with comparable genes [23], [24] and  based on the HumanNet v2.0 database [25], Liu et al. [21] also 

computed the disease functional similarity matrix 𝑆𝑖𝑑
𝑓𝑢𝑛

 that 𝑆𝑖𝑑
𝑓𝑢𝑛

(di, dj) illustrates the similarity of disease di 

and disease dj. 

 

Method 

Our proposed method’s workflow is depicted ịn Figure 1 and contains following stages. 

https://www.cuilab.cn/hmdad
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Figure 1: The workflow of proposed method 

 

Gaussian Interaction Profile Kernel for Microbes and Diseases 

In this study, apart from the microbe functional similarity as well as disease functional similarity, we also 

used Gaussian Interaction Profile (GIP) kernel to calculate similarity for both diseases and microbes considering 

its impressive performance capabilities. In the adjacent matrix 𝐴𝑀𝐷 , each 𝑖𝑡ℎ row defines the vector associated 

with the associations between disease and all microbes, denoted as 𝐴𝑀𝐷(di). In the same way, we also considered 

each 𝑗𝑡ℎ column as the vector associated with microbe mj in 𝐴𝑀𝐷 , denoted as 𝐴𝑀𝐷(mj). Similar to [21], we can 

calculate GIP kernel similarity for both diseases and microbes as below. 

GIP kernel similarity for diseases di and dj is computed as: 

GIPdSim(di, dj) = exp (−γdSim||𝐴𝑀𝐷(di) - 𝐴𝑀𝐷(dj)||2)     (1) 

where −γdSim is the normalized kernel bandwidth adjustment parameter and can be computed as follow: 

γdSim = 𝛾′𝑑𝑆𝑖𝑚/ 
1

𝑁𝑑
𝛴𝑖=1

𝑁𝑑 ||𝐴𝑀𝐷(𝑑𝑖)||
2

 

 

                 (2) 

where Nd indicates the quantity of diseases, 𝛾′𝑑𝑆𝑖𝑚is the original bandwidth. The value of  𝛾′𝑑𝑆𝑖𝑚 was 

fixed to 1 as in the study of Zhang et al. [26]. Similarly, with the microbes mi and mj, GIP kernel similarity was 

calculated as: 

GIPmSim(mi, mj) = exp (−γmSim||𝐴𝑀𝐷(mi) - 𝐴𝑀𝐷(mj)||2)   (3) 

where −γmSim  is the normalized kernel bandwidth adjustment parameter and can be computed as: 

γmSim = 𝛾′𝑚𝑆𝑖𝑚/ 
1

𝑁𝑚
𝛴𝑖=1

𝑁𝑚||𝐴𝑀𝐷(𝑚𝑖)||
2

 

 

   (4) 

where Nm indicates the quantity of microbes, 𝛾′𝑚𝑆𝑖𝑚  is the original bandwidth. The value of  𝛾′𝑚𝑆𝑖𝑚  was 

fixed to 1 as in the the study of Zhang et al. [26]. 

 

Calculating Integrated Similarity for Microbes and diseases 

To explore new relationships more effectively, we integrated Microbe functional similarity with Microbe GIP 

kernel similarity for attaining the Integrated Similarity matrix for Microbes (ISM) as: 

ISM(𝑚𝑖, 𝑚𝑗) = {
(Sim

fun(𝑚𝑖,𝑚𝑗) + 𝐺𝐼𝑃𝑚𝑆𝑖𝑚(𝑚𝑖,𝑚𝑗))/2 𝑖𝑓 Sim
fun(𝑚i,mj)  ≠ 0 

𝐺𝐼𝑃𝑚𝑆𝑖𝑚(𝑚𝑖 , 𝑚𝑗)      otherwise
    (5) 

Similarly, disease functional similarity was also integrated with disease GIP kernel similarity for attaining the 

Integrated Similarity matrix for Diseases (ISD) as: 

ISD(𝑑𝑖 , 𝑑𝑗) ={
(Sid

fun(𝑑𝑖 , dj) + 𝐺𝐼𝑃𝑑𝑆𝑖𝑚(𝑑𝑖 , 𝑑𝑗))/2   𝑖𝑓 Sid
fun(𝑑𝑖 , 𝑑𝑗)  ≠ 0  

𝐺𝐼𝑃𝑑𝑆𝑖𝑚(𝑑𝑖 , 𝑑𝑗)        otherwise
      (6) 

 

Improving Microbe-Disease Association Matrix Using a Weight K-Nearest Known Neighbour Algorithm 

As be mentioned, the validated microbe-disease association matrix is sparse. To lessen the sparsity in 

association matrix, we pre-processed it using a WKNKN algorithm inspiring by the success of previous studies 

[16], [27], [28]. WKNKN follows the same principle of K nearest neighbors (KNN), but adds a "weighting" 
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mechanism on how to process the missing data cases by borrowing from nearest neighbors that can potentially be 

truthful associations. Firstly, for each microbe, we utilized the functional similarity matrix 𝑆𝑖𝑚
𝑓𝑢𝑛

(mi, mj) to figure 

out known microbes adjacent to it (k), and used the scores similarity of them to deduce the interaction possibility 

potentially of mi, based on [28]: 

𝐴𝑚
𝑀𝐷(𝑚𝑖, :) = 

1

𝑍𝑚
𝛴𝑛𝑚=1

𝑘 𝑊𝑛𝑚
𝐴𝑚

𝑀𝐷(𝑚𝑛𝑚
, ∶) 

𝑊𝑛𝑚
= 𝛼𝑛𝑚−1𝑆𝑖𝑚

𝑓𝑢𝑛
(𝑚𝑖 , 𝑚𝑛𝑚

) 

in which 𝛼 ≤ 1, 𝑍𝑚 = 𝛴𝑛𝑚=1
𝑘 𝑆𝑖𝑚

𝑓𝑢𝑛
(𝑚𝑖 , 𝑚𝑛𝑚

)                        (7) 

that 𝑚𝑛1
to 𝑚𝑛𝑘

 are the k nearest known neighbors of 𝑚𝑖, sorted in decreasing order, 𝑊𝑛𝑚
is the weight 

coefficient. 

Secondly, we continued to use the semantic similarity matrix 𝑆𝑖𝑑
𝑓𝑢𝑛

(di, dj) to infer the probability spectrum of 

disease’s interaction, below: 

𝐴𝑑
𝑀𝐷(:, 𝑑𝑗) = 

1

𝑍𝑑
𝛴𝑛𝑑=1

𝑘 𝑊𝑛𝑑
𝐴𝑑

𝑀𝐷(: , 𝑑𝑛𝑑
) 

𝑊𝑛𝑑
= 𝛼𝑛𝑑−1𝑆𝑖𝑑

𝑓𝑢𝑛
(𝑑𝑛𝑑

, 𝑑𝑗) 

in which 𝛼 ≤ 1, 𝑍𝑑 = 𝛴𝑛𝑑=1
𝑘 𝑆𝑖𝑑

𝑓𝑢𝑛
(𝑑𝑛𝑑

, 𝑑𝑗)                   (8) 

where 𝑑𝑛1
 to 𝑑𝑛𝑘

 are the k nearest known neighbors of 𝑑𝑖, sorted in decreasing order, 𝑊𝑛𝑑
is the weight 

coefficient. 

Finally, we used the average of 𝐴𝑚
𝑀𝐷 and 𝐴𝑑

𝑀𝐷, and replace blanks with the corresponding values, in two 

equations below: 

T = (𝐴𝑚
𝑀𝐷  +  𝐴𝑑

𝑀𝐷)/2      (9) 

𝐴𝑖,𝑗
𝑀𝐷={

𝑇𝑖,𝑗      𝑖𝑓 𝐴𝑖,𝑗
𝑀𝐷 = 0

𝐴𝑖,𝑗
𝑀𝐷     𝑖𝑓 𝐴𝑖,𝑗

𝑀𝐷  ≠ 0
   (10) 

where we defined 𝐴 
𝑀𝐷_𝑛𝑒𝑤  as a matrix processed by the WKNKN algorithm. 

 

The Heterogeneous Network and the GAT Architecture 

Inspired by the work of Wang and Chen [7], we built the heterogeneous network as: 

HN = ( 𝐼𝑆𝑀    𝐴𝑀𝐷_𝑛𝑒𝑤

(𝐴𝑀𝐷_𝑛𝑒𝑤) 𝑇   𝐼𝑆𝐷
)        (11) 

where HN is the heterogeneous network, ISM is the matrix of integrated similarity for microbes, ISD is 

the matrix of integrated similarity for diseases, and 𝐴𝑀𝐷_𝑛𝑒𝑤 is the adjacency matrix obtaining from WKNKN 

while its transpose matrix is (𝐴𝑀𝐷_𝑛𝑒𝑤) 𝑇 . 
GAT is known as a network that works with graph data [29], in this work, it is deployed to acquire the features 

of microbes as well as diseases. In particular, given the HN matrix above, GAT can be formulated as: 

H(l) = f( H(l-1) , HN) = 𝜎(GAT( H(l-1) , HN))   (12) 

where H(l) represents the l-layer embedding of nodes, with l =1,...,L, 𝜎( ) means a non-linear activation 

function (ReLU). A single graph attention layer is indicated by GAT and the full L-layer structure is piled up by 

numerous GATs. The node feature set h = {ℎ1
⃗⃗⃗⃗ , ℎ2

⃗⃗⃗⃗ , . . . , ℎ𝑛
⃗⃗ ⃗⃗ } is used as the initial input, ℎ𝑖

⃗⃗  ⃗ ∈ 𝑅𝐹where n is the 

nodes’quantity and F reflects the quantity of features per node. A new node feature set is produced by this layer 

ℎ′ = {ℎ1
′⃗⃗⃗⃗ , ℎ2

′⃗⃗⃗⃗ , . . . , ℎ𝑛
′⃗⃗ ⃗⃗ }, ℎ𝑖

′⃗⃗  ⃗ ∈ 𝑅𝐹 ′.These features are transformed into a upper-level by utilizing a learnable linear 

transformation, where the weight matrix W ∈ 𝑅𝐹 ′x 𝐹 is applied to separate node. Following this, the attention 

factors were measured as: 

𝑒𝑖𝑗 = 𝑎(𝑊 ℎ𝑖
⃗⃗  ⃗,𝑊 ℎ𝑗

⃗⃗  ⃗)       (13) 

We applied the softmax function to normalize the attention factors to attain the coefficients as: 

𝛼𝑖𝑗 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗) = 𝑒𝑥𝑝(𝑒𝑖𝑗)/∑ 𝑒𝑥𝑝(𝑒𝑖𝑘)𝑘𝜖𝑁𝑖
    (14) 

The attention mechanism coefficients are calculated by substituting (13) into (14) as follows: 

𝛼𝑖𝑗 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗) = 
𝑒𝑥𝑝(LeakyReLU( a⃗ T,[ Wℎ𝑖⃗⃗⃗⃗  || Wℎ𝑗⃗⃗ ⃗⃗  ]))

∑ 𝑒𝑥𝑝(LeakyReLU( a⃗ T,[ Wℎ𝑖⃗⃗⃗⃗  || Wℎ𝑗⃗⃗ ⃗⃗  ]))𝑘𝜖𝑁𝑖

   (15) 

Where, 𝛼 is the attention coefficient, 𝑎 ⃗⃗   ∈ 𝑅2𝐹 ′refers to the weight vector that is parameterized, 

LeakyReLu indicates the activation function, || denotes the connection operation, and Ni indicates the group of 

neighbors associated with node i. Following the calculation of the normalized attention coefficients, the each 

node’s final output features are obtained: 

ℎ𝑖
′⃗⃗  ⃗ = 𝛼𝑖𝑖 Wℎ𝑖

⃗⃗  ⃗ + ∑ 𝛼𝑖𝑗 𝑗 𝜖𝑁𝑖
Wℎ𝑗

⃗⃗  ⃗      (16) 

In this study, we generated the initial embedding H(0) as: 

𝐻(0)=( 0    𝐴𝑀𝐷_𝑛𝑒𝑤

(𝐴𝑀𝐷_𝑛𝑒𝑤) 𝑇   0
)   (17) 
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Multi-kernel integration 

The multiple-layer GAT model can generate multi-embeddings, each representing distinct graph structures. 

Different structural information is reflected by these embeddings, enabling the resulting kernels to represent node 

similarities from various perspectives. The kernel sets for the microbe space SM = {Sm, Kh1
m, …, KhL

m} and the 

disease space SD = {Sd, Kh1
d, …, KhL

d} can be constructed by incorporating the existing similarity matrix. Where, 

Khl
m , Kh1

d denote the kernel matrices corresponding to the microbe and disease embeddings for each layer. We 

integrated multi-kernel as: 

Km=∑  𝐿+1
𝑖=1 AMi

m Si
m   (18) 

Kd=∑  𝐿+1
𝑖=1 ADi

d Si
d   (19) 

where, Si
m and Si

d refer to the i-th kernel in the microbe and disease kernels. AMi and ADi represent the 

attention coefficients associated with each kernel, while L means the layers’ total number. 

 

Decoder for Microbe-Disease Association Prediction 

To obtain associations between microbes and diseases, we utilized the Dual Laplacian regularized least 

squares  with two microbe and disease feature spaces combined kernel matrices [7]. In this study, the loss function 

is as: 

min J = ||Km𝛼m + (Kd𝛼d)T-2AMD_new
train||F2 + 𝜑(|| 𝛼m||F2 + ||𝛼d ||F2 )        (20) 

where, || ||F represents the Frobenius norm, AMD_new
train 𝜖 RNm x Nd is the adjacency matrix,  𝛼m, 𝛼d T𝜖 RNm 

x Nd  is the trainable matrix, Km𝜖 RNm x Nm and Kd𝜖 RNd x Nd form the combined kernel sets in the two feature spaces, 

φ is a decay coefficient that adjusts the regularization term’s weight. Thus, the result of microbe-disease 

associations predicted across the two feature spaces is as below: 

F* = 𝐾𝑚𝛼𝑚 + (𝐾𝑑𝛼𝑑)
𝑇/2     (21) 

 

III. Experimental Results 
Parameter settings 

In this paper, graph attention networks (GATs) are employed to derive features related to microbe-

disease associations. A multi-layer GAT model is specified for the determination of embeddings at multiple 

levels. Further, graph embeddings and fused similarities are used in combining multiple kernel matrices. 

Specifically, the number of GAT layers L is defined as 3. The embedding dimensions (k1, k2, k3) for each layer 

are configured as 256, 64 and 32. The learning rate lr is assigned a value of 0.001, while the  regularization 

parameters λ1 and λ2 are set to 2−3 and 2−4, and the values for γ_h1, γ_h2, and γ_h3 are specified as 2−4, 2−3, 

and 2−5. For parameter of k nearest known neighbors, the optimized k value is set to 5 after performing repeatedly 

experiments. 

Performance Evaluation 

We conducted 10-fold cross-validation experiments in order to measure the predictive performance by 

computing the our method AUC and AUPR values on the HMDAD dataset as previously stated. We calculated 

the TP (True Positive), FP (False Positive), TN (True Negative), and FN (False Negative) for the obtained results 

in each experimental running time. Specifically, TP and TN demonstrate the nicely predicted positive and 

negative samples, whereas FP and FN indicate the misclassified positive and negative samples. Our method 

performance was assessed through plotting the Receiver Operating Characteristics (ROC) [30] and Precision-

Recall (P-R) [31]curves. The ROC curves were plotted on TPR, FPR while P-R curves utilizing Precision and 

Recall. They were computed as: 

FPR=FP/(TN+FP)                                                                          (22) 

TPR=TP/(TP+FN)                                                                          (23) 

Recall = TP/(TP+FN)                                                                      (24) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TP/(TP+FP)                                                                (25) 

Figure 2 shows our method ROC curves and AUCs whereas Figure 3 illustrates P-R curves and AUPRs when 

performing 10-fold cross validation experiments and the number of k nearest neighbors is set to 5. Different AUC 

and AUPR values when k is changed from 2 to 7 are demonstrated in Table 1 
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Figure 2: Our method’s ROC curves and AUC values in 10 running time of 10-fold cross experiments when 

k=5 

 

 
Figure 3: Our method’s P-R curves and AUPR values in 10 running time of 10-fold cross experiments when 

k=5 

 

Table 1: Our method’s AUC and AUPR values when k is changed from 2 to 7 
Value of k AUC AUPR 

2 0.978 0.928 

3 0.977 0.932 

4 0.981 0.951 

5 0.985 0.968 

6 0.983 0.954 

7 0.973 0.941 

 

Ablation studies 

For the purpose of understanding the impacts of the integration of multiple similarities and also utilizing the 

WKNKN algorithm, we have conducted some ablation studies and summarized the results as in Table 2 below. 

 

Table 2: Our method’s AUC and AUPR values in some ablation case studies. 
Ablation case study AUC AUPR 

No WKNKN, only functional similarity of microbes and diseases 0.949 0.784 

No WKNKN, integrating similarity 0.969 0.898 

WKNKN, k=5, only functional similarity of microbes and diseases 0.966 0.894 

WKNKN, k=5, integrating similarity (proposed method) 0.985 0.968 
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Comparison with other methods 

For the purpose of illustrating that our method’s prediction performance is superior to some recent 

approaches, we utilized the results reported by the authors in their respective papers [14], [15], [32]. The 

experiments in these studies are performed on the same HMDAD dataset as our method. Both our method’s AUC 

and AUPR values are higher than all of the other related approaches as demonstrated in Table 3. It highlighted 

that it is potential an valuable tool for revealing microbe-disease associations 

Table 3: Our method’s prediction performance and other methods’ prediction performance on the same 

HMDAD dataset under 10-fold cross validation experiments. 
Method AUC AUPR 

GATMDA[14] 0.9398 0.9364 

MVGCNMDA [15] 0.9196 0.9327 

MVFA [32] 0.9718 0.8864 

Our proposed method 0.985 0.968 

 

Checking case study 

To increase our method’s reliability in revealing microbe-disease interactions, Type 2 diabetes was chosen as 

a case study due to its relevance and prevalence. As can be known, with a rising incidence worldwide, Type 2 

diabetes is characterized by insulin resistance as well as elevated blood sugar levels [33]. Understanding the 

associations between Type 2 Diabetes and microbial interactions is essential for advancing treatment strategies 

and improving patient care. Thus, for increasing our proposed method’s predictive reliability, Type 2 Diabetes 

was selected as a representative case study. As demonstrated in Table no 3, among the top 10 microbes predicted 

to be associated with Type 2 Diabetes using this approach, 8 associations have been validated through the 

HMDAD database. 

 

Table no 4: The top 10 predicted Type 2 diabetes-associated microbes. 
Rank Microbe ID Microbe name Evidence 

1 22 Bacilli HMDAD 

2 105 Clostridium HMDAD 

3 61 Betaproteobacteria HMDAD 

4 60 Bacteroidetes HMDAD 

5 230 Proteobacteria HMDAD 

6 153 Faecalibacterium prausnitzii HMDAD 

7 224 Prevotella Not conformed 

8 154 Firmicutes HMDAD 

9 108 Clostridium difficile Not confirmed 

10 183 Lactobacillus HMDAD 

 

IV. Conclusion And Discussions 
  Identifying the potential microbe-disease relationships not only facilitates diseases’ diagnosis, prognosis 

and treatment but also contributes to microbe-targeted therapies in precision medicine. However, determining 

these associations is often expensive, tedious and laborious. As a result, it is imperative to advance computational 

methods to improve the performance of current models. In this work, we introduced a new computational 

approach aimed at unveiling the associations between microbes and diseases. This approach offers several key 

contributions. Firstly, using the WKNKN to handle data sparsity and integrate multiple information sources 

improves prediction performance. Secondly, processing complex graph data with Graph Attention Networks 

(GAT) improves the model's capacity to identify complex relationships and rank important aspects, allowing for 

more precise and effective analysis. Finally, our approach can perform better than other state-of-the-art techniques 

for forecasting possible microbe-disease associations. Even with our model's high predictive performance, there 

are still some drawbacks. The intricacy and unpredictability of microbe-disease associations, as well as the 

scarcity and lack of validation of pertinent microbial data, provide difficulties. To improve the model's ability to 

capture and interpret these associations more successfully, future research should place a high priority on 

incorporating complicated network embedding approaches, such as knowledge graphs. 
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