
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 23, Issue 1, Ser. II (Jan. – Feb. 2021), PP 33-38

www.iosrjournals.org

DOI: 10.9790/0661-2301023338 www.iosrjournals.org 33 | Page

Understanding Microservices Best Practices for the Optimal

Architecture

Pradeep Kumar
Technology Architect (Specialist), British Telecom

Abstract –This paper deals with the best practices of Microservices and importance of CQRS (Command

Query Responsibility Segregation) and Event Sourcing for optimal architecture. Also, this paper guides you

through the relevant AWS services and how to implement typical patterns, such as CQRS and Event Sourcing,

natively with AWS services.

Many companies falling into the trap of using REST nowadays, due to popularity and power REST provides

based on its own merits, as an “all-in-one” tool.Most microservices architectures will have at least one of those
use cases but it seems it is tempting, if the only tool you have is a hammer, to treat everything as if it were a

nail. Developers are also used to design applications with synchronous request/reply since APIs and Databases

have trained developers to invoke a method and expect an immediate response. But Synchronous

communication is the crystal meth of distributed softwarebecause it feels good at the time but in the long run

will lead with many problems.It has been identified a good Microservice Architecture can’t be designed without

Event-driven design using Event Sourcing and CQRS.

Date of Submission: 25-02-2021 Date of Acceptance: 10-03-2021

I. Introduction
Let us talk very first how REST helps in designing the Microservices. Let’s define what problems

REST solves best. HTTP itself is a request/response protocol, so REST is a great fit for request/reply

interactions.Since HTTP is a de facto transport standard, the transport layer of the APIs created using REST are

interoperable with every programming language. And due to the wide range of security threats present on the

internet, the security ecosystem for REST is robust, from firewalls to OAUTH.With API Gateway you can

create an API that acts as a “front door” for applications to access data, business logic, or functionality from

your backend services, such as workloads running on Amazon EC2 and Amazon ECS, code running on
Lambda, or any web application. An API object defined with the API Gateway service is a group of resources

and methods. A resource is a typed object within the domain of an API and may have associated a data model or

relationships to other resources.Synchronous communication is the crystal meth of distributed softwarebecause

it feels good at the time but in the long run will lead with many problems.It is applied primarily to the

communication between microservice within the enterprise and that in some cases are at worst with the

principles ofmicroservice architecture. The use of REST and synchronous patterns have negative consequences

sometimes as mentioned below:
Service Blocking - While invoking a REST service the service is blocked waiting for a response. Itdegrades the

application throughput because this thread could be processing other requests.

Tight Coupling - What happens when another service comes online in the future and needs the data? Youadd

the new endpoint, but that leads to anunnecessary coupling. Retry logic also leads to tightly coupled to the other

services which is antipattern of “single in purpose”.

II. Proposed System
2.1 Event-driven architecture with microservices using Event Sourcing and CQRS

The solution to the shortcomings associated with RESTful/Synchronous [i] interactions is to combine

the principles of event-driven architecture with microservices. Event-Driven Microservices (EDM) [ii] are

inherently asynchronous and are notified when any event is fired. In many cases, asynchronous communications

is how many of our daily events take place. Take the example of WhatsApp: It would be incredibly inefficient to

navigate to each friend and check to see if they have a status update. Instead we are notified when a friend has

updated their status.
Below are the various approaches to integrate an event-driven architecture with microservices using event

sourcing and CQRS[iii] and best practices will be identified:

Approach 1 - Suppose, there are two microservices running in their own containers: Order and Customer.When

microservices share the same database, the data model among the services can follow relationships among the

https://gotocon.com/dl/goto-chicago-2015/slides/MartinThompson_and_ToddMontgomery_HowDidWeEndUpHere.pdf
https://gotocon.com/dl/goto-chicago-2015/slides/MartinThompson_and_ToddMontgomery_HowDidWeEndUpHere.pdf
https://gotocon.com/dl/goto-chicago-2015/slides/MartinThompson_and_ToddMontgomery_HowDidWeEndUpHere.pdf

Understanding Microservices Best Practices for the Optimal Architecture

DOI: 10.9790/0661-2301023338 www.iosrjournals.org 34 | Page

tables associated with the microservices. Each microservice is responsible of managing own data and Customer

and Order has one to many relationships in tables inside the single DB. The Order service and Customer service

can access the tables from the same database. It will lead to proper transactions with ACID properties, where
customer data is updatedOrder data can also be updated to guarantee proper atomicity.But there is a limitation to

this approach because if there is a change in one data model, then other services are also impacted.

Approach 2 - Let us try to improve the approach 1. As the microservices best practices each microservice

should have its own database so Customer and Order microservice will have separate DB and in this situation,

there will be no relationship among the tables. Isn’t it great?however, there is a limitation of this approach,

transaction management cannot be properly handled. If customer data is deleted, the corresponding order also

has to be deleted for that customer.

Approach 3 - To overcome this limitation approach 2, Let us try integrating an event-driven architecture with

our microservices components.As per this approach any change in the customer data will be published as an

event to the messaging queue, so that the event consumer consumes the data and updates the order data for the

given customer that generated the new event.Isn’t it great? But there is a limitation of this approach also. The
atomic updates between the database and published events to the message queue is a challenge. Though these

types of transactions can be handled by distributed transaction management, but this is not recommended in a

microservices approach.

Approach 4 - To overcome this limitation approach 3, event-sourcingcan be introduced in this microservices

architecture. In this approach any event triggered will be stored in an event store. There is no update or delete

operations on the data, and every event generated will be stored as a record in the database. If there is a failure

in the transaction, the failure event is added as a record in the database. Each record entry will be an atomic

operation. It solves the atomicity and maintains the audit records which is later helpful on data analytics. The

benefits of messaging for event-driven microservices are many and varied:

I. Non-Blocking - It is a waste of resources to have many threads blocked and waiting for a response. With

asynchronous messaging applications canprocess otherrequestsin parallel instead of waiting for a response.

II. Loose Coupling -Services are independent and can talk to each other by publishing and consuming the
messages.Each service is notified of new events and these events can be consumed by any number of

services. Loose coupling allows microservices to be ready for high adaptiveness under the enterprises with

never ending changes. It easy for microservices to scale since they’re decoupled and do not block. This also

makes it easy to determine which service is the bottleneck.

III. Greater Resiliency - Messaging system offer guaranteed delivery can manage event failures and enable

rapid recovery without message loss. In the case of less service failure, the use of messaging allows healthy

services to continue processing since they are not blocked on the failed service. Once healed, the failed

service will start processing, making the system eventually consistent.

IV. Error Handling – In event driven microservices code becomes much cleaner and readable as all the

cumbersome retry and error handling logic is gone. In event driven microservices the messaging tier

handles the retry of unacknowledged messageswhich frees the service to be small in size and single in
purpose.

Isn’t it great? But to make the data eventually consistent, this involves asynchronous operations because the data

flow integrates with messaging systems.The event store capacity has to be larger in this case also.

Approach 5 - To overcome this limitation approach 4,we integrate CQRS (Command Query Responsibility

Segregation) [iv] with event sourcing [v] to overcome the above limitations.In this microservices architecture

design pattern which will have a separate model, service and database for write operations in the database. This

acts as a command layer and separate model,service and database for query data that acts as a query layer.The

command layer is used for inserting data into a data store. The query layer is used for querying data from

the data store.In the Customer microservice, when used as a command model, any event change in customer

data, like a customer name being added or a customer address being updated, will generate events and publish to

the messaging queue. This will also log events in the database in parallel.The event published in the message
queue will be consumed by the event consumer and update the data in the read storage.The Customer

microservice, when used as a query model, needs to retrieve customer data that invokes a query service, which

gets data from read storage.Go through the below diagram for better understandings.

Understanding Microservices Best Practices for the Optimal Architecture

DOI: 10.9790/0661-2301023338 www.iosrjournals.org 35 | Page

Figure1. Microservices with CQRS and Event sourcing

Here we can see few benefitslike CQRS having separate models and services for read and write
operations, leveraging microservices for modularity with separate databases, leveraging event sourcing for

handling atomic operations, Maintain historical/audit data for analytics with the implementation of event

sourcing. Isn’t it great? Yes, this is great with a simple limitation with additional maintenance of infrastructure,

like having separate databases for command and query requests.

2.2 Microservices Architecture based on Asynchronous messaging using CQRS and Event Sourcing on

AWS

CQRSis very much helpful to optimize your architecture for consistent writes in a relational database
and very low latency reads, you might instead want to optimize for very high write throughput and flexible

query capabilities. You can use a NoSQL datastore, such as Amazon DynamoDB [vi], to get high write

scalability. Amazon Aurora can be used to provide complex, one-time query functionality with scalability on

read. With this option, you can use Amazon DynamoDB streams that send data to an AWS Lambda function

that makes appropriate updates to keep the data on Amazon Aurora up to date.

Figure 2. CQRS architecture on AWS with DynamoDB, Lambda, and Aurora

Now let us discuss on command part of a CQRS architecture with the event sourcing pattern. When

you combine these patterns, you can rebuild the service query data model with the latest application state by

replaying the update events.CQRS pattern generally results in eventual consistency between the

read/write.Anadditional pattern to implement communication between microservicesis Event Sourcing. Services

communicate by exchanging messages via a messaging queue. One major benefit of this communication style is
that it’s not necessary to have a service discovery and services are loosely couple.This is great, Isn’t it? If we

Understanding Microservices Best Practices for the Optimal Architecture

DOI: 10.9790/0661-2301023338 www.iosrjournals.org 36 | Page

have synchronous systems tightly coupled which means a problem in a synchronous downstream dependency

has immediate impact on the upstream callers. Retries from upstream callers can quickly fan-out and amplify

problems.
Let us try to event sourcing using AWS [vii]. In the event sourcing pattern, each event that changes the

system is stored first to a message queue, and then updates to the application state are made based on that event.

Depending on specific requirements, like protocols, AWS offers different services which help to implement this

pattern. One possible implementation uses a combination of Amazon Simple Queue Service and Amazon

Simple Notification Service.Both services work closely together: Amazon SNS allows applications to send

messages to multiple subscribers through a push mechanism. By using Amazon SNS[viii] and Amazon SQS[ix]

together, one message can be delivered to multiple consumers.

Figure 3.Message Bus integration using Amazon SNS and Amazon SQS.

When you subscribe an SQS queue to an SNS topic, you can publish a message to the topic and

Amazon SNS sends a message to the subscribed SQS queue. The message contains subject and message
published to the topic along with metadata information in JSON format.

A different implementation strategy is based onwith Amazon Kinesis [x] Data Streams, which allows

multiple consumers to retrieve data from a stream. For example, an event can be written as a record in an
Amazon Kinesis stream, and then a service built on AWS Lambda [xi] can retrieve the record and perform

updates in its own data store.

Figure 4.Event sourcing pattern using Amazon Kinesis and AWS Lambda

III. Few Microservice Best Practices
I. The Single Responsibility Principle- Just like with code, where a class should have only a single reason to

change, microservices should be modelled in a similar fashion. Building bloated services which are subject

to change for more than one business context is a bad practice.

II. Consider Using Domain-Driven Design - This is a design approach where the business domain is
carefully modelled in software and evolved over time, independently of the plumbing that makes the system

work. It is a type of design principle[xii] that makes use of practical rules and ideas to express an object-

Understanding Microservices Best Practices for the Optimal Architecture

DOI: 10.9790/0661-2301023338 www.iosrjournals.org 37 | Page

oriented model. In simpler terms, microservices are designed around your business domains. It is used by

platforms such as Netflix who use different servers to run their content delivery and related tracking

services.

III. Using Event sourcing and CQRS- As discussed in approach 4 and 5 above in the detailed discussion.
IV. Right API with the Right Microservice - If you are not sure which technology is best for your project,

consider the following parameters during the decision-making process like Maintainability, Fault-tolerance,

Scalability, Cost of architecture and Ease of deployment.

V. Use asynchronous communication to achieve loose coupling - To avoid building a mesh of tightly

coupled components, consider using asynchronous communication between microservices.
VI. Proxy your microservice requests through an API Gateway - Instead of every microservice in the

system performing the functions of API authentication, request/response logging, and throttling, having an

API gateway[xiii] doing these for you upfront will add a lot of value. Clients calling your microservices will

connect to the API Gateway instead of directly calling your service. This way you will avoid making all

those additional calls from your microservice.
VII. Use Automation for Independent Deployment - It would make no sense to break down the monolithic

architecture into individual microservices if they cannot be deployed independently. Also, while you are at

it, make sure to implement a ‘build and release’ automation structure [xiv]. Not only will this help you to

reduce the overall lead time, but it will also make releases quicker and enhance the deployment process.If
you have a system of e.g. 50 Microservices and only one Microservice needs to be changed, then you can

update only one Microservice without touching the other 49. But deploying 50 Microservices independently

without Automation is a tough task. To take full advantage of this Microservice feature, one needs CI/CD

and DevOps.

VIII. Proper monitoring - This is only possible if you have been monitoring the performance of individual

components in the first place. So, if monitoring is not something that you have focused on, it is a great place

to begin the cleaning process.With one Monolith, it is much simpler to monitor the application. But having

many microservices run on containers, observability of the whole system became very crucial and

complicated. Even Logging became complicated to aggregate logs from many containers/machines into a

central place. Often one API request to a microservice leads to several cascaded calls to other microservices.

To analyse the latency of a Microservice system, it is necessary to measure the latency of each individual
Microservice. Zipkin/Jaeger offers excellent tracing support for Microservices.

IX. Micro Frontends - As most Software Architects are Backend Developers, they have little regard for

Frontend and Frontend is usually neglected in the Architecture Design. Very often in Microservice projects,

backends are very finely modularized with their database but there is one Monolith Frontend. In the best

case, they consider one of the hottest SPA (React, Angular) to develop the Monolith Frontend. The main

problem of this approach is that Frontend Monolith is as bad as Backend MonolithThere are many ways to

develop SPA based Micro frontends: with iFrame, Web Components or via (Angular/React) Elements.

X. Have dedicated infrastructure hosting your microservice - You can have the best designed microservice

meeting all the checks, but with a bad design of the hosting platform it would still behave poorly. Isolate
your microservice infrastructure from other components to get fault isolation and best performance. It is

also important to isolate the infrastructure of the components that your microservice depends on.

IV. Conclusion
It has been discussed about the solution to the shortcomings associated with RESTful/Synchronous

interactions is to combine the principles of event-driven architecture with microservices asit has been

believedsynchronous communication is the crystal meth of distributed softwarebecause it feels good at the time

but in the long run will lead with many problems. RESTful/synchronous is applied primarily to the

communication between microservice within the enterprise and that in some cases are at worst with the
principles of microservice architecture.So,in this paper it has been focused more on event driven architecture

using CQRS/Event Sourcing to optimize a microservice Architecture. It has been also discussed that a

Microservice Architecture can’t be designed without event-driven mechanism.This paper also guides you

through the relevant AWS services and how to implement typical patterns, such as CQRS and event sourcing,

natively with AWS services.

534–558, 2006.

nference on Software Maintenance and Evolution
(ICSME), 201
updaters,” 9thEuropean Conference ore ntenance and
Reengineering (CSMR 2005), 21-23 March 2005, Manch-

https://gotocon.com/dl/goto-chicago-2015/slides/MartinThompson_and_ToddMontgomery_HowDidWeEndUpHere.pdf

Understanding Microservices Best Practices for the Optimal Architecture

DOI: 10.9790/0661-2301023338 www.iosrjournals.org 38 | Page

ester, UK, Proceedings, 2005
European Conference on Software Maintenance and
Reengineering (CSMR 2005), 21-23 March 2005, Manch-
ester, UK, Proceedings, 2005
Software Maintenance and

Reengineering (CSMR 2005), 21-23 March 2005, Manch-

ester, UK, Proceedings, 2005European Conference on Software Maintenance and

Reengineering (CSMR 2005), 21-23 March 2005, Manch-
ester, UK, Proceedings, 2005
ware releases through build, test, and deployment
automation. Addison-Wesley Professional, 2010
of the Third International Workshop on Release Engineer-
ing, Firenze, 2015
e Quality, Reliability and Security (QRS), pp. 262–

of the 17th European Conference on Pattern Languages
of Programs, Irsee, 2012.
ia Seybold Group, vol. 2, 2006

References
Technology, vol. 57, pp. 21–31, 2
Technology, vol. 57, pp. 21–31, 201REFERENCES

[1]. How Synchronous REST Turns Microservices Back into Monoliths – The New Stack
[2]. B. M. Michelson, “Event-driven architecture overview”, Patricia Seybold Group, vol. 2, 2006

[3]. G. Young. (2016) A Decade of DDD, CQRS,Event Sourcing –Domain-Driven Design Europ 2016. visited on 2016-10-11. [Online].

Available: https://www.youtube.com/watch?v=LDW0QWie21s

[4]. G. Young. (2010) CQRS and Event Sourcing. visited on 2016-10-11. [Online]. Available:

http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing/

[5]. D. Betts, J. Dominguez, G. Melnik, F. Simonazzi, and M. Subramanian, Exploring CQRS and Event Sourcing: A journey into high

scalability, availability, and maintainability. Microsoft patterns & practices, 2013

[6]. Amazon DynamoDB | NoSQL Key-Value Database | Amazon Web Services
[7]. AWS white paper available online: Implementing Microservices on AWS - Microservices on AWS .

[8]. Amazon Simple Notification Service (SNS) | Messaging Service | AWS

[9]. Amazon SQS | Message Queuing Service | AWS

[10]. Amazon Kinesis - Process &Analyze Streaming Data - Amazon Web Services

[11]. AWS Lambda – Serverless Compute - Amazon Web Services

[12]. Domain-driven design - Wikipedia

[13]. Whitepapers online: Best Practices for Designing Amazon API Gateway Private APIs and Private Integration

[14]. G. G. Claps, R. B. Svensson, and A. Aurum, “On the journey to continuous deployment: Technical and social challenges along the

way,” Information and Software Technology vol.57 pp.21-31, 2015

https://thenewstack.io/synchronous-rest-turns-microservices-back-monoliths/
https://www.youtube.com/watch?v=LDW0QWie21s
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing/
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://aws.amazon.com/sns/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://aws.amazon.com/sqs/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/lambda/
https://en.wikipedia.org/wiki/Domain-driven_design
https://d1.awsstatic.com/whitepapers/private-api-best-practices.pdf

