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Abstract: In the paper we encoded each qubit state in 2 two-level system into a point in the extended complex 

plane. According to the one-to-one encoding, an algorithm of realizing complex operation utilizing a single 

quantum gate was proposed. In some case the algorithm is decorrelation free. We hope the preliminarily 

discussed results are useful in the quantum simulations. 
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I. Introduction 
The proposition of quantum computer dates back to 1980s 

[1]
 and it was shown that quantum computers 

are powerful than classical computers on various specialized problems. For example, the Deutsch-Jozsa 

algorithm
 [2]

, Shor's quantum algorithm for factoring integers 
[3]

, Grover's quantum search algorithm 
[4]

, 

algorithms for Hamiltonian simulation of quantum systems 
[5]

 and quantum algorithm for linear systems of 

equations 
[6,7,8,9]

.  

 Here we take an alternative notation on traditional quantum computing. We first notice that an 

important difference between quantum computer and classical computer is that qubits are usually superpositions 

of the computational basis. If one encodes each qubit into point in the extended complex plane (ECP), quantum 

gates can be regarded as complex functions. Thus, we can perform a complex operation using quantum gates. 

Apparently, complex operations are hardly realized by classical computer and the realizing by quantum 

computer will exhibit another power of quantum computing. We show how to realize simple complex operation 

using quantum gates in the manuscript. 

 

II. Representation of qubits on an extended complex plane 
In this section we propose how to represent a qubit in an ECP.As we know, qubits can be represented by points 

on a Bloch sphere (BS)
 [10,11]

, using the spherical coordinate system. This representation is based on the fact that 

any qubit can be represented as 

 | cos | 0 sin |1 ,
2 2

ie  
                (1) 

as shown in Fig. 1. In the above expression [0, ]   is the polar angle, phase [0,2 )   is the azimuth 

angle. In this representation North and South poles correspond to the basis states, | 0   and |1>, respectively. 

Notice that the BS representation can be generalized to represent, for example, entangle states
 [12]

 or N-level 

systems
 [13]

. 

 
Figure 1 Encoding a point on Bloch sphere into the one in the extended complex plane. 
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To code points on the BS into the one in the ECP, we firstly set the BS as a unit sphere, the center of 

which locates at the origin of coordinates. Secondly, we set x-y plane (plus infinite point) as ECP. Apparently, 

the line, connecting South pole and a point on BS, and ECP intersect at a point. We thus establish the one-to-one 

correspondence from a qubit, represented by a point on Bloch sphere, to a point in ECP. From Fig. 1 one can 

verify that a point in BS, the spherical coordinate of which is ( , )  , corresponds to a point in ECP, 

                   tan .
2

iz e 
                          (2) 

Notice that since 0    , tan 0
2


 , which means that tan

2


 is the module of z, |z|. Here are some 

special cases: |0> and |1> correspond to 0z   and z    and set of points ( , )
2


  corresponds to a unit 

circle, 
iz e  . This representation of qubits by points in ECP provides an isomorphism between qubit and 

point in ECP. 

A quantum gate corresponds to a unitary transformation 

           

2

3 2 3( )

cos sin
.

sin cos

i

i i

e
G

e e



  

 

  

 
 

 
                    (3) 

If qubits are symbolized as points in ECP, one can represent the quantum gate as a map from ECP to ECP, i.e., a 

complex function, ' ( )z f z , where both z and 'z  are points in ECP. 

           
2

3

2

sin cos
'

cos sin

i
i

i

z e
G z e

z e






 

 





                     (4) 

Thus, we list complex representations of some quantum gates in the Tab. 1. 

 
Gate matrix Function 

Hadamard 1 11

1 -12

 
 
 

 

1

1

z

z




 

X 0 1

1 0

 
 
 

 

1z  

Y 0

0

i

i

 
 
 

 

1z  

Z 1 0

0 -1

 
 
 

 

-z 

Phase 1 0

0 i

 
 
 

 

iz  

8


 

/4

1 0

0 ie 

 
 
 

 

/4ie z
 

Rotation cos sin

sin cos

 

 

 
 
 

 

sin cos

sin cos

z

z

 

 




 

Table 1. Matrix representations and complex function ones of usual quantum gates. 

 

The inner product of 1

1 1

i
z r e


  and 2

2 2

i
z r e


  is defined as 

2 1( )

1 2
1 2

2 2

1 2

1
( , )

(1 )(1 )

i
r r e

z z
r r

 



 

, with the 

identity 
*

1 2 2 1( , ) ( , )z z z z . After the measurement, the possibility of the state, represented by 
iz re  , 
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locating in |0> is 
2

2

1
| ( ,0) |

1
z

r



, whereas in |1>, 

2
2

2
| ( , ) |

1

r
z

r
 


, or in other words, 

| ( , ) |

| ( ,0) |

z
r

z


 . 

 

III. Simple Complex Operation Using Quantum Gates 
In this section we exemplify how to perform a complex function computing using quantum gate.  For 

example, we want to compute 
1

( )
1

z
f z

z





. In classical computing we face two difficulties: 1) one can 

hardly realize the operation f(z) in a small number of steps; 2) if 1z  ,  the result is overflowing. 

However, these difficulties do not occur in the quantum computing. We show the circuit in Fig. 2. To do the 

complex operation we use a Hadamard gate. To perform the operation 
1

'
1

z
z

z





(or 'z iz ), where 

iz re   and 
'' ' iz r e  , we first input an initial state according to 

2 2

1
| | 0 |1

1 1

ire

r r



    
 

. 

Then, we perform the operation utilizing a Hadamard gate (or phase gate) and get the finial state as 
'

2 2

1 '
| ' | 0 |1

1 ' 1 '

ir e

r r



    
 

. At last, from the final state we obtain the result as 
'' ' iz r e  . 

 

 

Figure 2. Schedule to perform complex operation 
1

'
1

z
z

z





 using a Hadamard gate (a) and operation 

'z iz  using phase gate (b). 

 

 Sometime we only focus on 
2 2| ' | 'z r . From Eq. (2), we need only to obtain 

2

2

1
(0) | (0, ') |

1 '
P z

r
 


. In this case the phase of the final state is irrelevant and our schedule is 

decorrelation free. To clarify the computing proceed we also list the program flow chat of quantum computing 

simulation of complex operation 
1

'
1

z
z

z





 in Fig. 3. 
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Figure 3. Program flow chat of quantum computing simulation of complex operator 
1

'
1

z
z

z





. In the figure p 

is the measurement possibility of state |0>, and q, state |1>. 

 

According to Fig. 3, we list quantum computing simulation results of 1z i  , 3 4z i  and 

0.5 0.5z i   in Tab. 2. From the table, one finds that we indeed obtain results of complex operation 

1
'

1

z
z

z





, as long as we perform enough (simulative) measurements. 

 
z  'z  

40'r  100'r  'thr  

1z i   
-0.2-0.4i 0.42 0.44 0.45 

3 4z i   
-0.75-0.25i 0.82 0.80 0.79 

0.5 0.5z i   
0.2-0.4i 0.38 0.48 0.45 

Table 2. Quantum computing simulation results of 
1

'
1

z
z

z





 with 1z i  , 3 4z i  and 

0.5 0.5z i  . 40'r  and 100'r  are values performed by 40 and 100 times (simulative) measurements 

respectively, whereas ' | ' |thr z  are theoretical values (it is in fact given by the expression 
2

1

| |
'

| |
th

b
r

b
 ). 

IV. Summary 
In this letter we find that there is a one-to-one correspondence between one-qubit state in a two-level 

energy system and a point in the extended complex plane. Taking advantage of the correspondence, one can 

consider a quantum gate as a complex operation. Thus, we preliminarily discussed a simple schedule to perform 

complex operations using a single quantum gate. If we are unconcerned with the phase of the final result, such 

schedule is decorrelation free, as shown in the section 3. 

However, it is worthy to note that how to representation of multi-qubit into point in extended complex 

plane, as authors did in Refs. [12,13], is an open question. 

In the area of quantum simulation, for instance, Refs. [14,15,16], one always deals with complex 
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operations directly. We hope that the discussed results are useful in the quantum simulation. 
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