
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 21, Issue 1, Ser. II (Jan - Feb 2019), PP 01-13

www.iosrjournals.org

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 1 | Page

A Methodology forDesigning High Confidence Pattern viaEvent-

B: Insulin Infusion Pump Case Study

1
Eman K. Elsayed,

2
Enas E. El-Sharawy,

2
Linda O.El-Badri

1
Mathematicas Dept., Faculty of Science, Al-Azhar University, Cairo, Egypt.

2
Computer Dept., College of Science and Humanities in Jubail, Imam Abdulrahman Bin Faisal University,

Kingdom of Saudi Arabia
Corresponding Author: Eman K. Elsayed

Abstract: The correct formal design is anachievement in software engineering, but we faced with challenges to

satisfy that. The informal problems types are general or special. The special informal problems depend on the

case study and the general informal problems come from an inexperienced designer called anti-patterns". In

this paper we discuss these two types on Insulin Infusion Pump (IIP) and sample of UML class diagrams. The

proposed approach to formalize IIP is based on using event B. Finally, we could verify that the code generated

from the proposed approach is correct and formal to use as a pattern. The accuracy of the proposed verification

steps are suitable for using toany systems or medical device. We applied the proposed approach on the sample

of eightfamous UML class diagrams used as templates. The method ameliorates the proof percentage.

Keywords: Event-B, Insulin Infusion Pump (IIP), patterns, anti-patterns.

--- ----------

Date of Submission: 14-01-2019 Date of acceptance: 31-01-2019

--- ----------

I. Introduction
Insulin Infusion pumps are medical devices used to drugs delivery to patients at specific rates and in

precise amounts. It is necessary to design and manufacture of these medical devices correctly so as for ensuring

the safety of patients and defects, but there are many of the informal problems types are general like an anti-

pattern or special problems such as in the IIP.

There are many works introduce to detect only special problems like in references [1], [2] and [3]. In

addition, there were many works for the general problems detection such as in references [4], [5] and [6], but

our proposed method covered all the informal problems (special and general). In addition, UsingFormal

methods languages like Event-B can be support mathematical reasoning required for detecting this kind of

problems.

Formal methodscan, and must play an important role to verify the system requirements, and in

guaranteeing the correctness, reliability and safety of developing system software. Since software plays an

important role in all fields as the medical field, like the FDA, it needs an effective way to evaluate embedded in

the devices. That is to certify the systems developed and to guarantee the safe behavior of each system [7,8,9].

Many people believe that formal methods have the potential to develop dependable, safe and secure systems that

are also more amenable to certification with required features that can be used to certify dependable medical

systems [9,10].

Event-B is a formal method for specifying, modeling and reasoning systems. Event- B is an evolution

of the B-Method [11] developed by Jean-Raymond Abrial. A model in Event-b consists of contexts and

machines, Contexts contain the static part (types and constants) of a model while Machines contain the dynamic

part (variables and events). The modeling elements of a context [12, 13] have four types: sets, constants,

axioms, and theorems. A Machine consists of variables, invariants, events, theorems and variants. Variables, v,

define the state of a model. All events are Atomic and can be executed only when their guards hold [4]. There

are various relationships between contexts and machines. A context can be "extended" by other contexts and

"referenced" or "seen" by machines. A Machine can be "refined" by other machines and can reference to

contexts as its static part.

A Design pattern is a general repeatable solution to a problem which usually occurring in software

design. It's not a finished design which can be converted directly into code. But It is a description or template

for how to solve a problem that can be used in various positions. In object-oriented programming, a pattern may

include the description of certain objects and object classes to be used, side by side of their attributes and

dependencies. The intention of Design Patterns in Event-B is to have a methodological approach to reuse former

http://searchsoa.techtarget.com/definition/object-oriented-programming
http://whatis.techtarget.com/definition/class

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 2 | Page

developments (referred to as patterns) in a new development. The patterns approach is a promising avenue to let

inexperienced designers build conceptual models and as a tool for building domain models [14].

In Event-b pattern the proofs of the pattern can be reused too. It was shown that for the special case of a model

that does not see any context and its events do not have any parameters, the generation of a refinement of the

problem at hand is correct by construction and no proof obligation needs to be generated again. The correctness

of the construction relies on a correct matching of the pattern with the problem [15].

Anti-patterns have a negative impact on the comprehension and maintainability of a software system.

The designer may introduce anti-patterns in their models because of time pressure, lack of understanding,

communication, and–or skills. To develop high-quality models, a designer must have the support of expressive

engineering tools such as detection anti-patterns tools. Anti-patterns are defined as design patterns whose

purpose is to document common bad practices in software design [16].

The ability to successfully design software projects is highly depending on using patterns without

informal problems “Anti-pattern”. This will lead us to believe that having a general tool for verification and

validation of a pattern design is important. In software engineering, the levels of detection of anti-patterns are

project management level, design level, and code level. Good results have been obtained in all levels. There is a

tool under implementation for detecting the project management anti-patterns [17]. Also, there are many papers

that propose detection techniques at the design level as proposed in [18], but the code level in [19] focuses on

certain types of anti-patterns.

The remainder of this paper is organized as follows: Section 2 presents related work. The proposed

method phases are presented in Section 3. Our approach is applied in a case study in section 4. Section 5

presents the analysis of results. Finally, we present the Conclusion and future work in section 6.

II. Related Work
In this section, we will presentsome attempts to improve the pattern quality or solve certain anti-

pattern. In 2014 Eman k.[4], proposed an attempt to enhance the software quality by detecting the anti-patterns

problems on certain model as ATM model. The proposed approach improved the proof obligation by SMT

solver.This method detected only some general anti-patterns in the event B model.

Also,Stoianov, Alecsandar[5] in 2010 introduceda detection method for anti-patterns. That was by a

logic-based approach. The main advantage of that was the simplicity of the defining Prolog predicates to

describe both structural and behavioral aspects of patterns and anti-patters. That was in code level only.

In 2014[6]authorsevaluated different query approaches to locate anti-patterns for refactoring Java

programs. In a traditional setup, they use code analysis tool called Columbus to optimize Abstract Semantic

Graph and processed by hand-coded visitor queries. On the other hand, an EMF representation was built for the

same program model. This approach presents a set of anti-pattern which we also appliedit in our case study.But

this approach hasadd locked Technique for detection anti-pattern however, our approach has more general

Technique.

Masci, P., Ayoub, A., In 2013 [1] presented the model-based development of user interface behavior of

an infusion pump in the Prototype Verification System (PVS). The developed model was verified against

relevant safety requirements provided by the FDA. Finally, the PVS code generator was used to produce

executable code from the verified specifications.

In 2015 [2]authors presented an incremental proof-based development of IIP. That is byusing Event-B

modeling language to formalize the given system requirements. Furthermore, the Rodin proof tools are used to

verify the correctness of functional behavior, internal consistency checking with respect to safety properties,

invariants and events. A generic model for an IIP was developed in the Event-B modeling language to verify the

safety requirements related to timing issues as in [3].In addition, there were many works for pattern language. In

[20] the author presented a survey of apattern language for data visualization without specification for any

practical applications.

III. Proposed Method
In this section, we introduce a description of our approach phases for producing a confidence pattern.

The Firstphase is detecting and correcting all types of informal problems from a model.
That is to formalize a certain model and verify the correctness of it. We choose the IIP devise to check the two

types of informal design on it. Then we start by creating an IIP initial model then we finished with a confidence

IIP pattern which haven't structure anti-patterns and solved 16 special informal problems by chain of eleven

refinements.

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 3 | Page

The Second phase is increasing the confidence by using event b solver as Satisfiability Modulo

Theory(SMT solver).

Weapply the Automatic theorem prover like SMT solvers with Event-B model to have safeguards for reducing

the proving effort and increasing the degree of automation. SMT-solvers are natural candidates to carry out the

verification conditions generated by the application of Event-B methods.

The third phase converts model to confidence pattern with saving proof.

Pattern in Event b is to have a systematic approach to reuse the previous developments (referred to as patterns)

in a new development. The approach of pattern is a tool for building domain models for the inexperienced

designer [15].The proofs of the pattern can be reused also.This phase is important for saving the proofs.

The fourth phase is generation a confidencesource code.

The philosophy Code generation means the automatic generation of source code. It can be considered as an

“open-loop” refinement step. When there is not static equivalence checking against the previous refinement is

possible. It classified into three steps rewriting, Translation and building.

IV. Case Study
We implement our case study by using a RODIN platform on IIP. Where event-b is supported by a

RODIN platform [21], an open-source tool implemented in the Eclipse framework,this tool provides an Event-B

integrated development environment, automated proof strategies, a model checking and code generation.

Also, Insulin Infusion Pump (IIP) is a small, complex, software-intensive medical device that allows

controlling continuous under the skin infusion of insulin to patients. It delivers physiological quantities of

insulin between meals and at meal times. An insulin pump composed of the physical pump mechanism, a

disposable reservoir and a disposable infusion set. The pump system includes a controller, and a battery. The

disposable infusion set includes a cannula for subcutaneous insertion, and a tubing system to interface the

insulin reservoir to the cannula. At present, open-loop and closed-loop insulin pumps exist. A closed-loop

insulin pump is also known as an artificial pancreas, which automatically monitors and controls the blood

glucose level of a patient. In an open-loop insulin pump, patients' needs to monitor the blood glucose level

manually. An insulin pump can be programmed to release small doses of insulin continuously (basal), or one

shot dose (bolus) before a meal, to control the rise in blood glucose.

The application of the phases is as the following:

The Firstphase is detecting and correcting all types of informal problems from a model.
4.1-The special informal problems which depend on the case study as in IIP model. These are as:

Prob1: the basal profile process which the interaction between the user and device doesn’t clear.

Prob2: the pause and resume of the IIP are essential behavior it satisfies the definition of unpredictable events.

Prob3: The device can't suspend all active basal delivery or bolus deliver during pump refilling and in the case

of system failure.

Prob4:The device doesn't allowundergo a power-on-self-test (POST) whenever the device power is turned on.

Prob5:The device doesn't allow the user to manage system functionalities that related to: stopping the insulin

delivery; validating basal profile parameters; reminder management and validating bolus preset parameters.

Prob6: the user doesn't enable to create a food database that can be used to store food or meal descriptions and

the carbs associated with them.

Prob7: The device doesn't allow for the user to change parameter setting basal profile, bolus preset, and

temporary basal.

Prob8: The device doesn't allow the user to define a basal profile that consists of an ordered set of basal rates of

the user.

Prob9: The device can contain several basal profiles, but not only one basal profile can be active at any single

point in time.

Prob10: The device doesn't allow the user to override an active basal profile with a temporarybasal, without

changing the existing basal profile.

Prob11: the active basal profile, can't resume after the temporary basal ends.

Prob12: The user doesn't be able to stop the active normal or extended bolus.

Prob13: The device doesn't maintain a history of basal and bolus dosages over the past n-days.

Prob14: The device doesn't maintain of an electronic log of every operation associated with a user alert

Prob15: The device doesn't provide feedback to the user regarding system and delivery status.

Prob16: The device can't enforce a maximum dosage for the normal bolus or extended bolus.

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 4 | Page

 To solve these special informal problems we present ten incremental refinements of IIP model. These

refinements are implemented by Event-B modeling language to formalize the given system. The eleven

incremental refinements are briefly described as in different references as [2][3].

Initial Model (Power Status) includes two phases. Practically, by using the Rodin platform in the preparation

phase consisted of the power on/off, pump priming; input settings (user programmed variables).

The insulin infusion phase is the main activation phase of the system. The INFU_START and the INFU_ PROC

indicate the main functional behavior of the system. An Event-B context declares enumerated set power State

defined using axioms (axm1 – axm2) for power status. An abstract model declares a list of variables defined by

invariants (inv1 – inv3).

We introduce four events to specifying the desired functional behavior for controlling the power status of an IIP.

These events include guard(s) for enabling the given action(s), and the actions that define the changes to the

states of the power status Here, we provide all events related to The preparation phase (POWER ON, INFU

START, INFU PROC and POWER OFF).

Ref1: This refinement refined the initial model behavior into two phases; one focus on the basal profile setting

and the priming process and the other phase refined the infusion process event into several sub events.

Practically, in this refinement, we are going to refined The INFU_ PROC event is into several sub events which

include pausing, resumingand stopping of the infusion process.Two new events PRIME (priming the pump) and

BP_SET (basal profile setting) are introduced to eliminate ready in event INFU_START.INFU_START is

refined by adding guards describing that when priming and basal profile setting are done and when the infusion

status is stopped.In this refinement, we define an enumerated set and a list of variables to formalize user

operations defined by invariants (inv1 – inv9).

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 5 | Page

Frist refinement declares a list of variables defined by invariants (inv1 – inv5). This refinement step introduces

nine events to specify the entire possible INFU_ PROC event.We provide only two events related to refine the

INFU_START and POWER_OFF events.

Ref2: It can be refine the basal profile setting to overcome prob1 by introducing detailed events such as adding,

deleting, modifying, and reading basal profile to ameliorate the interaction between patient and device.

Practically, this refinement introduces a set of operations that is performed between the user and the device for

insulin delivering. These operations are adding, deleting, modifying and reading the basal profile. These

operations are allowed when an IIP is on and we want to deliver an insulin amount in a controlled manner

according to the physiological needs of a patient. This refinement introduces five events to specify all the

possible user operations related to the given requirements of basal profile. We provide only three events related

to The BP_ADD event adds a new pair which does not exist in the basal profile, The BP_DEL event deletes an

existing pair from the basal profile andThe BP_COMP (basal profile complete) refines the BP_SET by adding

guards such as(bp) is not an empty set and 0 is included in the domain of basal profile.

Ref3:This refinement introducethe time issues and the corresponding solutions for them prob2 by applying

several timing patterns to the infusion process in the IIP.According to the requirements, the main behaviors of

the IIP are described in two kinds of insulin infusion processes, called basal and bolus.The insulin infusion

process is classified into four groups: basal, temporary basal, bolus and extended bolus.Twenty seven events are

introduced to refine the infusion process and use a special event TICK TOCK to control time incrementing in

the whole system.

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 6 | Page

Ref4: This refinement helps to solve both prob3and prob4 by introducing new ten events for specifying the

desired functional behavior for controlling the power status of an IIP such as POST_Completedevent.

Ref5: This refinement applies to solve each prob5, prob6 and prob8. This refinement displays 35 events to

determine all the possible of user operations related to the IIP given problems such as event

CurrActiUserOper_Idle1that allows a user to create a new basal profile.

Ref6:It introduces to overcoming prob6 and prob7. That is by adding 58 events to model the basal profile

management,which contain some functions such aschecking the completion of removing task, checking the

validity of the selected basal profile, activating basal profile.

Ref7: This refinement can conquer prob10 and prob11.This refinement offer 22 events to model temporary

basal profile management. That includes multiple operations like activating, checking validity of entered profile

and deactivating the temporary basal profile.

Ref8: This refinement applied to overcome all prob5 and prob12. Thisrefinement submits total 37 events to

model the bolus preset Management, which have different subtasks such as creating, activating, checking

validity of entered data and removing the bolus preset.

Ref9: This refinement presents to fix prob12 and prob13. It introduces 33 events to model bolus delivery

calculation, which includes checking validity of bolus calculation.

Ref10: This refinement can solve prob14 and prob15 by introducing 28 events to model the reminder

management, whichincludes various operations like creating a new reminder, checking validity of a new entered

reminder and removing an old reminder.Finally,

Ref11: This refinement produces a solution for prob16 and prob13. This refinementpresents 40 events. Where,

14 events to refine other previously abstractly defined events and 26 eventsto model the insulin calculator.

4.2- DetectionThe General Informal Problems Called "Anti-Patterns": In this part of phase one, we start to

detect the anti-patterns from any model. That is by converting it to event-b first. In this case study, we detect the

IIP anti-patterns problems by using the Event-b. When you need to construct models, you must be alert to any

anti-patterns and solve them. Anti-patterns classify into three main parts; semantic anti-pattern, behavior anti-

pattern and structure anti-pattern[4]. Our proposal detects the structure anti-pattern automatically. That is by

creating Event-b model and solving the problems.

The following examples present some structure anti-patterns. Fig. 1 presents the anti-pattern in Event-B

machine of IIP model when loose association between Event-B components. The error description list helps

designer to know that. Also Fig. 2 shows “The default case of the variable not determined anti-pattern” and how

Event-B detects it. Another example is “Concatenation to Empty guard anti-pattern” and" unused parameters,

anti-pattern "as shown in Fig. 3,4 respectively.

Fig.2:The default case of the variable not determined Fig.1: Missing a relation between Event-B component

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 7 | Page

Fig.4: Anti-pattern When unused parameters Fig.3: Concatenation to Empty guard Anti-pattern

Also, we detected a general informal problem in another case study called (Hospital UML class

diagram) The Hospital UML class diagram contains six classes (Hospital, Booking, Doctor, Patient, Continues

and not Continues).The class "Booking" has five attributes and three operations, the class "Doctor" has five

attributes and no operations, the class "patient" has no attributes and four operations, the class "Hospital" has

two attributes and no operations, the class "Continuous " has two attributes and no operations and finally the

class "not Continuous" has two attributes and no operations. The model also has seven associations, some of

them with known multiplicity and some not known. That is as shown in Fig.5

Fig.5: Hospital UML class diagram

The UML structure general informal problems (anti-patterns) are detected practically in three levels, some

detected during the first level in UML-B or iUML-B when we start by using UML-B plugin certainly. Some

detected during the second level “convert UML-B to Event B”. Finally, some detected in the third level “proof

obligations”.

The anti–patterns have been detected in these phases are shown in Fig's 6, 7, 8,9,10 respectively.

 The attributes of a class haven’t data type; attribute (Room number) in class (booking) doesn't have adata

type.

 The operations have the same name; class "patient" has two operations with the same name (stay).

 Invalid identifier for the association, the association name must not have any space where association

(work in) has space in its name.

 Invalid expression constrain anti-pattern; as shown in the properties slot of the class (Patient) which has an

Invalid expression guard of the event "make operation".

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 8 | Page

Fig.8: Associationwork in has Invalid identifier

Fig.10: Invalid expression guard of the event

make operation

Fig.9: event make operation in class patient

From the importance of detecting general anti-patterns we created a new Eclipse plugin in Rodin

platform. That is by using the eclipse platform to create this plugin. The plugin has information about all

structure anti-patterns to help the users of RODIN.It will only contain documentation files, and then the easiest

way to proceed for beginners is to start from the available template.In RODIN Help, the user can see that a new

Anti-pattern item has been created in help contents for help menu as shown in Fig.11.

Fig. 7: two operation have the same name

Fig.6: Attribute doesn't have a data type

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 9 | Page

Fig.11: Help contents of RODIN which contain new anti-pattern files.

The second phase is applying SMT solver for increasing the automation degree by decrease the proof

obligation. We used SMT-solvers as Automatic verification of proof obligations. The configuration of the plug-

in includes a choice of SMT-solvers. It is now available to the formal methods community as an exploratory

package through Rodin’s official source code repository. Currently, the verification with the SMT-solver has to

be activated as shown in Fig. 12. The verification was successes as shown in Fig.13.

Fig13: The screenshot of the proof after a successful

proof,the button has been dis-activated and the status is

"proved"

Fig.12: the screenshot of the proof before the SMT

proof, the button is active and the status is" not

proved"

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 10 | Page

The third phase converts model to confidence pattern with saving proof.

Practically, in this phase we use "pattern plugin" in RODIN platform. That is for more abstract solution. The

screenshot in fig(s)14,15,16 and 17present the convert steps. Where, fig8 is illustrates the matching step

between the problem and the specification. This phase contains a dialog for the developers to choose the

matching between variables and events.

Fig. 9 presents the syntax checking of the matching provided by the user in the previous step. Fig 10presents the

incorporating of the refinement of the pattern into the development. And Fig. 11presents the renaming pattern of

both variables and events.

Fig.14 First step. Matching Fig.15 Second step. Syntax Checking

Fig. 16 Third step. Incorporating Fig. 17 Fourth step. Renaming

The fourth phase is Automatic C++ Code Generation for IIP Pattern Model. Once the pattern has been

converted manually, all selected events- without explicit- was translated automatically using the EB2C++ plugin

for the RODIN Platform. A single C++ file is produced for each machine. C++ code generation has a different

phase of the translation process. An Event-b pattern is initially restated in an easily translatable subset of the

notation “Rewrite Phase”. C++ code is then automatically generated from the pattern through a suitable tool

“Translation Phase”. Finally “Build Phase” adds support functions and the compiler of the source code

language. After applying three phases for generating C++ code from IIP algorithm in Event-B model we

obtained the code as in Fig. 18.

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 11 | Page

V. Analysis of Result
In this section, we analysis the results of our proposed method as in the following:-

In RODIN platform, amodel can’t prove full automatic, so we unable to generate code from the Rodin

event B model directly. But by using the SMT solver help for increasing the proof obligation automatically and

save it. By using SMT-Solver approach the proof raised to (62%) proof instead of (44%) that obtained by

applying Rodin onlyas shown in table1 that present the Proof statistics of Insulin Infusion Pump (IIP) model

after solving all informal and anti-patterns from the model and using SMT solver.

Table1. Proof Obligation analysis of IIP pattern.

POs Methods /

POs

Total

POs
Auto Interactive

(SMT)

Proved

POs %
Undercharged

Rodin 214 96 0 96(44%) 118

SMT 214 96 38 134(62%) 80

Now, toverify and ensurethat there are not anti-patternsproblems were found in our IIP pattern, we usedreverse

engineering tools like Imagix4D[22]whichcheck all properties of C++ generated code (according to the fourth

phase). Then we produce a list of reportssuch as:

 The report "Missing Default Case" in our code like switch statement that does not have a default case in

fig.19.

 The reporton the "Variables That Are Never Used" like unused global, static and local variables, which,

depending on the option selected such as variables that are read but never set by any functions fig.20.

 The report on "Missing Return Type" such as function declaration that does not specify the return type

 And the report about "Un-terminated Case" likes a case in a switch statement that is not terminated by an

explicit transfer of control, such as a break statement.

Fig.20:Imagix4D Report for unused variables Fig.19: Imagix4D Report for uninitialized variables

Fig.18: Example of Event PPOWERON translated in C++ code

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 12 | Page

Table.2: The number of Occurrences of structure Anti-patterns in the UML patterns

We also detect and correct the anti-patterns on eight UML class diagrams. These patterns are ATM

UML class diagram [23], Library and Android UML class diagrams [24], Hasp UML class diagram [25],

Seminar, Order and Auction UML class diagrams [26] and Furniture UML class diagram [27]). That is needed

to start the method by converting phase to translateUML class diagrams toevent-b models. "iUML-B" class

diagrams plugin in RODIN Platform [28] is suitable for that. The table 2 presents the 229 general anti-patterns

which classified into three groups on the sample of eight class diagrams. The three groups arestructureanti-

patterns of attributes, structure anti-patterns of class andstructure anti-patterns of association. The highest

detected number of structure anti-patterns is in association group.

VI. Conclusions and Further Works
The proposed method is used to verify a medical model such as insulin pump. That is by using formal

method to ensure the correctness and stability during proof stage. Using pattern after removing the anti-patterns

give us two properties reusability and save the effort of modeling. The code was generated after detection anti-

patterns are more confident.

In the future, we are going to correctthe anti-patterns automatically.Also we will create a plugin in

RODIN to detect and fix the anti-patterns automatically. Also, we will make a comparative study between our

method and the methods based on ontological analysis.

References
[1]. Masci, P., Ayoub, A., Curzon, P., Lee, I., Sokolsky, O., Thimbleby, H.: Model-based development of the generic PCA infusion

pump user interface prototype in PVS. In: Bitsch, F., Guiochet, J., Kaˆaniche, M. (eds.) SAFECOMP. LNCS, vol. 8153, pp. 228–
240. Springer, Heidelberg (2013).

[2]. Singh N.K., Wang H., Lawford M., Maibaum T.S.E., Wassyng A. Stepwise Formal Modelling and Reasoning of Insulin Infusion
Pump Requirements. In: Duffy V. (eds) Digital Human Modeling. Applications in Health, Safety, Ergonomics and Risk

Management: Ergonomics and Health. DHM 2015. Lecture Notes in Computer Science, vol 9185. Springer, Cham (2015).

[3]. Xu, H., Maibaum, T.: An Event-B approach to timing issues applied to the generic insulin infusion pump. In: Liu, Z., Wassyng, A.
(eds.) FHIES 2011. LNCS, vol. 7151, pp. 160–176. Springer, Heidelberg (2012)

[4]. Eman K. Elsayed, converting UML class diagram with anti-pattern problems into verified code relying on event-b, AIML
journal, ISSN 1687-4846, Volume 14, issue 1, ICGST LLC, USA, August, (2014).

[5]. Stoianov, Alecsandar. "Detecting patterns and anti-patterns in software using Prolog rules." Computational Cybernetics and
Technical Informatics (ICCC-CONTI), 2010 International Joint Conference on. IEEE, (2010).

[6]. ZoltánUjhelyi, ÁkosHorváth, DánielVarró, Anti-pattern Detection with Model Queries: A Comparison of Approaches, vol. 00, no. ,
pp. 293-302, IEEE,(2014).

[7]. Chen, Y., Lawford, M., Wang, H., Wassyng, A.: Insulin pump software certification. In: Gibbons, J., MacCaull, W. (Eds.) FHIES
2013. LNCS, vol. 8315, pp. 87–106. Springer, Heidelberg (2014)

[8]. Keatley, K.L.: A review of the FDA draft guidance document for software validation: guidance for industry. Qual. Assur. 7(1), 49–

55 (1999)

[9]. Lee, I., Pappas, G.J., Cleaveland, R., Hatcliff, J., Krogh, B.H., Lee, P., Rubin, H., Sha, L.: High-confidence medical device software

and systems. Computer 39(4), 33–38 (2006)

[10]. M´ery, D., Singh, N.K.: Real-time animation for formal specification. In: Aiguier, M., Bretaudeau, F., Krob, D. (Eds.) Complex

Systems Design and Management, pp. 49–60. Springer, Berlin Heidelberg (2010).

[11]. Abrial, Jean-Raymond, and Jean-Raymond Abrial. The B-book: assigning programs to meanings. Cambridge University Press,

2005.

[12]. BOITEN, EERKE, and Jean-Raymond Abrial. "Modeling in Event-B-System and Software Engineering." Journal of Functional
Programming 22.2 (2012): 217.

[13]. Abrial, Jean-Raymond, et al. "An open extensible tool environment for Event-B." Formal Methods and Software Engineering.
Springer Berlin Heidelberg. 588-605, (2006) .

[14]. Xiaohong Yuan, X. & Fernandez, E.,” Patterns for business-to-consumer ecommerce applications”, International Journal of
Software Engineering & Applications (IJSEA), Vol.2, No.3, pp 1 (2011).

[15]. EmanElsayed, Gaber El-Sharawy and Enas El-Sharawy," Integration of automatic theorem provers in event-b
patterns",International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.1, January (2013).

 Android system Furniture

system

HASP Java Library Auction Seminar Order ATM Anti-patterns

76 - 4 3 26 5 5 2 31 structure anti-
patterns of

attributes

1

8 - - - 1 1 - 3 3 structure anti-

patterns of

class

2

145 31 14 8 29 9 24 16 14 structure anti-

patterns of

association

3

229 31 18 11 56 15 29 21 48 Total

A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin Infusion Pump Case Study

DOI: 10.9790/0661-2101020113 www.iosrjournals.org 13 | Page

[16]. W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and T. J. Mowbray, Anti Patterns: Refactoring Software,

Architectures, and Projects in Crisis, 1st ed. John Wiley and Sons, March 1998.

[17]. Stamelos, I. (2010),Software project management anti-patterns, Journal of Systems and Software 83 (1), 52-59.

[18]. Fourati, R., Bouassida, N., & Abdallah, H. B. (2011). A metric-based approach for anti-pattern detection in uml designs‟. In
Computer and Information Science 2011 (pp. 17-33). Springer Berlin Heidelberg.

[19]. Maiga, A., Ali, N., Bhattacharya, N., Sabane, A., Gueheneuc, Y. G., &Aimeur, E. (2012, October). SMURF: a SVM-based
incremental anti-pattern detection approach. In 2012 19th Working Conference on Reverse Engineering (pp. 466-475). IEEE.

[20]. NiklasElmqvist, Ji Soo Yi, "Patterns for visualization evaluation", Information Visualization , Vol. 14 (3) 250–269 , (2015).

[21]. Project RODIN: rigorous open development environment for complex systems (2004). http:// rodin-b sharp.sourceforge.net/

[22]. imagix4D reverse engineer tool available at https://www.imagix.com/products/source-code-analysis.html.

[23]. ATM class diagram available athttps://www.lucidchart.com/pages/class-diagram-for-ATM-system-UML, access at Jan.2017.
[24]. Library and Android class diagrams available at http://www.uml-diagrams.org/class-diagrams-overview.html, access at Jan. 2017.

[25]. Hasp class diagram available at http://www.uml-diagrams.org/software-licensing-class-diagram-example.html?context=cls-

examples, , access at Jan. 2017.

[26]. Seminar, Order and Auction class diagrams available at http://creately.com/diagram/example/gsxncbybt/Seminar+Class+Diagram,

access at Jan. 2017.

[27]. Furniture class diagram available at https://www.gliffy.com/go/html5/launch?app=1b5094b0-6042-11e2-bcfd-
0800200c9a66&templateId=4218693, access at Jan. 2017.

[28]. Event B class diagrams iUML-B ver. 1.2.0 released at Des. 2015 https://sourceforge.net/projects/Rodin-b-harp/files/

IOSR Journal of Computer Engineering (IOSR-JCE) is UGC approved Journal with Sl. No.

5019, Journal no. 49102.

Eman K. Elsayed. " A Methodology forDesigning High Confidence Pattern viaEvent-B: Insulin

Infusion Pump Case Study. "IOSR Journal of Computer Engineering (IOSR-JCE) 21.1 (2019):

01-13

http://journals.sagepub.com/author/Elmqvist%2C+Niklas
http://journals.sagepub.com/author/Yi%2C+Ji+Soo
https://www.imagix.com/products/source-code-analysis.html
https://www.lucidchart.com/pages/class-diagram-for-ATM-system-UML
http://www.uml-diagrams.org/class-diagrams-overview.html
http://www.uml-diagrams.org/software-licensing-class-diagram-example.html?context=cls-examples
http://www.uml-diagrams.org/software-licensing-class-diagram-example.html?context=cls-examples
http://creately.com/diagram/example/gsxncbybt/Seminar+Class+Diagram
https://www.gliffy.com/go/html5/launch?app=1b5094b0-6042-11e2-bcfd-0800200c9a66&templateId=4218693
https://www.gliffy.com/go/html5/launch?app=1b5094b0-6042-11e2-bcfd-0800200c9a66&templateId=4218693
https://sourceforge.net/projects/Rodin-b-harp/files/

