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Abstract : The article presents a generalized continuation of the parameter and Newton methods for solving 

nonlinear equations . It describes and explores one approach to the application of the continuation method for 

solving boundary value problems when searching for the optimal control. Solving boundary using the parameter 

and the solution obtained in the choice of variables. The results of simulations performed on Matlab. 
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I. Introduction 

Consider a system of nonlinear algebraic and transcendental equations n in the  unknowns x1, x2, …, xn 

containing parameter p: 

.0),( pxF .                       .1((1) 

Here  T

nxxxx )...,,,( 21
 the vector, p

1R and  T

nFFFF ),...,,( 21
the vector valued function in 

space R
n
.  

Suppose that for some values 0pp  , known solution       )0(02010 ,...,, nxxxx  , equation (1), ie, 
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Consider the neighborhood of  U  
1

00 ),(  nRpx in the form of a cuboid with the center in point 
  ),( 00 px . 

The implicit function theorem. 

Theorem 1. ([1]) Suppose that,  

1. The vector function  F is defined and continuous in U   ),( 00 px . 

2. In U exist  continuous partial derivatives of  F with respect to ),1( niFi   all arguments ),1( nixi   and the 

parameter  p. 

3. Point    ),( 00 px  satisfies (1). 

4. At  point 
  ),( 00 px  is  nonzero Jacobian det ( J ), whose matrix is of the form: 
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Then in a neighborhood  of  (x(0), p0) of equations (1) defines x1, x2,…,xn as a single-valued functions p 

                     nipxx ii ,1),(                                                                (4)
 

features (4) satisfy the conditions of  xi(p0) = xi(0), i = 1,2,..,n
 
 and dxi /dp (i=1,2,..,n)  derivatives  are also 

continuous in this neighborhood. 

       Hence, the implicit function theorem defines a neighborhood of  U  single curve point (x(0), p0), which has a 

parametric representation (4). This curve is called the curve of the set of solutions of the equations (1). 

The first and third conditions of  Theorem 1 is not very burdensome. 

The points at which det(J)  nonzero (3) will be called regular, and the points where det (J) = 0 – special. 
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The singular points of the continuation of the solution may be mixed, ie there is a plurality of branching of 

solutions of (1), if may be possible to continue making.  

The first use of the idea of continuing in computer belongs to, apparently, M. Laeyu [2]. He introduced the 

transcendental equation H(x) = 0 parameter p and thus reduced it to an equation of the form (1). And the option 

has been introduced so that for p= p0 = 0, we can easily obtain the solution x0=x(p0), and when p=pk= 1, the 

equation would be applied to the original. Going by the sequence of values of the parameter  p0 < p1 <…< pk, M. 

Laeyu proposed to build a solution for every pi, i=1,2…,k by using Newton-Raphson  method, use the solution 

for the previous pi-1 values as an initial approximation. 

  

       )()()(
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i pxx   denote the approximate value of the desired solution )()( ii pxx   to the j-th step of the 

iterative process of  Newton-Raphson method at 
ipp  . Then proposed by M. Laeyu process of constructing 

the solution of equation (1) in the transition from pi-1 to pi can be written as: 
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where  ),( )1(
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The iterative process (5) is carried out to satisfy the condition   )1(

)(
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j
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i xx , where 0  given the 

accuracy of calculations. 

 

II. A continuous analogue of Newton's method 
 Another formulation of the continuation method have DF Davidenko [3, 4]. Differentiating system (1) as a 

complex function of the parameter  p 
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For this system of equation (1) is complete integral satisfying the condition    0, 00 pxF .          

The system of equations (6) is linear in the derivatives dpdx / . Provided non-zero determinant of the 

Jacobian J arrive at a system of ordinary differential equations 
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The system of equations of this problem is called a continuation of the equations in normal form.  

This approach solves the problem of the choice of the initial approximation to the solution. The 

simplest of these schemes, the method of the Euler scheme when, leads to the following algorithm: 
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where  .1 ii ppp  
 

Continuation of solutions by integrating the Cauchy problem is commonly called a continuous analogue of 

Newton.  

We now note one interesting possibility of using the continuation method established by MK Gavurin [5]. 

To solve nonlinear equations  construct an equation with the parameter as follows 

                               
 1,0,0)()1()(),( )0(  pxHpxHpxF                                                            (9)

  
Here, the parameter p is entered so that a solution of equation (9) with p = 0 and p = 1, the equation refers 

to the original. If  we now enter a new parameter  λ so that 

                  ,0,1 ep                                                    (10)
 

then the equation (9) takes the form: 

                          0)()(),( )0(   xHexHxF                                                                       (11)
 

Differentiation of this equation for λ leads to the following Cauchy problem in the parameter  λ.  
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       Integration is the task for  λ Euler method with step 1  leads to the iterative process 
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But this process is exactly the same as the process of iterative Newton-Raphson method for the equation  H 

(x) = 0 for the initial approximation  .)0(

)0( xx   

Continuation method on parameter in the form presented here can be little or no change in the common 

non-linear operator equations, if by ),( pxF  understand non-linear invertible operator with a parameter. 

 

III. Generalized to the solution continuously variable 

A boundary value problem: 
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must select 

         ).,...,,(,0 21 naaaAAx                                                     (15) 

Thus, to satisfy the boundary conditions. 

Here it is assumed that the boundary problem (14) - (15) has a unique solution. 

We introduce the functional 
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Minimum functional ),( AT on a set of initial values   Ax 0  (15) determines the solution of the boundary 

problem (14) - (15). 

We calculate the minimum functionality specified by Newton's formula: 
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Where  )( kA  the gradient of the function ),( AT  at  the    )(, kk AA Hessian matrix. 

We now divide the interval of integration [0, T] on a system of nested segments: 

               Tttt r ,0,0,0,0 21                                                             (18) 

On the segment  1,0 t  we define the functional form (16) with the substitution T is t1:   
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Since the segment [0, t1] is small, the minimum of the functional (19) is easily found by Newton's formula 

(17). 

Next on the interval [0,t2] we consider the minimum of the functional (16) with the substitution therein T to t2, 

using  as a first approximation of the solution obtained on the interval [0, t1]. This process can continue until the 

tr = T. 

It should be noted that the proposed procedure removed the question of the choice of the initial 

approximation in an iterative Newton process (17). However, the convergence of the proposed method is 

determined by conditioning Hessian. When bad conditionality growing number of partitions of the interval [0, 

T], which in turn leads to a decrease in the efficiency of the method and the growth of rounding errors. 

 

IV. Reduction of the problem of optimal control of a boundary value problem. 

       It is known that the problem of finding extremals in Pontryagin optimal control problem is reduced to 

solving boundary value problem, it can be used to her numerical methods described above. Next, a class of 

optimal control problems, the process of constructing a boundary value problem and the features of the 

application to her continuation method. 

       We write down the standard formulation of the optimal control problem. Let's start with performance 

problems in the presence of the end manifolds: 

        

min

,)(,)0(

,),,,(

10







T

XTxXx

RUuRxtuxfx mn

                                                       (20) 

where control )(u  belongs to the class of piecewise continuous functions. 
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To find the extremal problem will apply the necessary condition for optimality in the form of the Pontryagin 

maximum principle. We write the function of the Hamilton-Pontryagin: 

     ),,,(),,,( tuxftuxП                                                          (21) 

Assumption 4.1. The optimal control for the problem (20) exists. 

Obviously, this assumption is satisfied (a consequence of the convexity of the management) for tasks that 

are affine in control. 

Assuming that the maximum principle requirements are met, the corresponding theorem guarantees the 

existence of a nontrivial conjugate variable ѱ, which satisfies the adjoint equation, which in combination with 

the original differential system gives the boundary value problem for the maximum principle: 
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The boundary conditions are obtained from the environment: 

         .)(,)0( 10 xTxxx                                                        (23) 

For problems with non-fixed time, such as performance problems, it is proposed to make the change to the 

time variable 
T

t
 , and enter the time T in the phase space of a constant function: 
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To eliminate the ambiguity associated with the invariance of the conjugate variable to multiplication by a 

constant need to take the normalization condition of the conjugate variable at one end by-cutting. Thus, we have 

2n + 1 ordinary differential equations and the same boundary conditions. 

For problems with the terminal functionality min))((  TxFJ  is changed only the right boundary 

condition: )).(()( TxFT   
For the purposes of an integral functional: 

 
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dtttutxfJ
0

0 min)),(),((  

 

Changes Hamilton-Pontryagin 

 ),,,(),,,( tuxftuxП  + )),(),((00 ttutxf  

assuming the existence of a functional, can be put 10  . In the case of non-fixed the right end of the 

boundary condition on the right end 
1)( xTx   is replaced by .0)( T  

To apply the continuation method, described in the previous section, to put boundary value problems is 

necessary to put forward additional conditions: It requires the existence of continuous derivatives 

      )(,,,,, **

00 uuffff xxuxuxxxx . For tasks that are affine in control, provided the regularity of the 

control system, ie, nondegeneracy gradient 0),,(  txПu   , can be found analytically ),,(* txu 
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Uu
U


 .  

Until now, the assumption was made that the operating area is sleek and compact. Otherwise (eg rectangle) 

application of the method of continuation on parameter directly is impossible, since it is not provided with the 

requirements of the existence of continuous derivatives maximizer, and therefore violated the assumption of 

smoothness and regularity.  

To avoid these difficulties, the application of smoothing management. Details smoothing convex compacts 

described in [8]. Investigation of stability of solutions of the optimal control problem for smoothing the 

management is given in [9]. 

V. Example and numerical result 
The Newton method is used to find the initial value for the boundary value problem, and then applied to the 

solution of optimization problems quick impact 

Example 1.  
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Using the Newton method, we find the initial value 

( )0(),0(),0( 321  ) = (0.489; 2.866 ; 0.989 ) 

The result received by using Matlab: 

 
                                                         Figure 1. variables x1, x2 

Figure 1 illustrates  the state of the variables (x1, x2) from the first state (0,0) to the last status (3,4). 

                                      
                                                 Figure 2. Control variable u, variable x3 

In Figure2 illustrates the state of the control variable u change over time, and we can see the switching point at 

t0 = 2.6299.  
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The results obtained: 

9837.2)(;9998.3)(;3899.5 21  TxTxT  
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