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Abstract: The main objective of this model is to focus on how to use the model of fuzzy system to solve fuzzy 

mathematics problems. Some mathematical models based on fuzzy set theory, fuzzy systems and neural network 

techniques seem very well suited for typical technical problems. We have proposed an extension model of a 

fuzzy system to N-dimension, using Mamdani's minimum implication, the minimum inference system, and the 

singleton fuzzifier with the center average defuzzifier. Here construct two different models namely a fuzzy 

inference system and an adaptive fuzzy system using neural network. We have extended the theorem for 

accuracy of the fuzzy system to N- dimensions, and provided a medical application of the fuzzy mathematics 

models. Since, liver is the largest internal member in the human body, so diagnosing liver disorder disease is a 

high interest to researchers of the fuzzy modeling and the fuzzy system. Therefore, the fuzzy mathematical 

models are applied on a real data to the Liver Disorder disease. Consequently, a comparison between three 
models: the FS with Mamdani model, ST model, and the ANFIS is made. Therefore, we have obtained the best 

result with the ANFIS. Finally, the programs of these models by using MATLAB created and performed. 
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I. Introduction 
Fuzzy mathematics provides the starting point and basic language for fuzzy systems (FSs) and fuzzy 

modeling (FM) [Ruan and Wang (1997)], while the fuzzy mathematical principles are developed by replacing 

the sets in classical mathematical theory with fuzzy sets (FSs) [Samandar (2011)]. The concepts and principles 

in fuzzy mathematics are useful in FSs and adaptive neuro-fuzzy systems (ANFSs) [Singh et al. (2009)], [Shing 

and Jang (1993)]. Fuzzy variables are processed using a system called a fuzzy inference system (FIS) which 

involves fuzzification, fuzzy inference, and defuzzification [Wang (1997)], [Aik and Jayakumar (2008)]. The 

FIS collects the rules in the fuzzy rule-base into a mapping from fuzzy set A ∈ X to fuzzy set B ∈ Y 

[Sivanandam and Deepa (2008)]. We must construct interfaces that are the fuzzifier and defuzzifier, between the 

FIS and the environment because in most applications the input and output of the FS are real valued numbers 

such our application in this model to Liver Disorders [Sug (2012) and Gulia et al. (2014)]. The reason to 
represent a fuzzy system in terms of a neural network is to utilize the learning ability of neural networks to 

improve performance, such as adaptation of FS [Rameshkumar and Arumugam (2011)]. When the expert is 

demonstrating, we measure the inputs and the outputs; that is, we can collect a set of input-output data pairs 

[Nayak (2004)], [Hndoosh et al. (2012) and (2013)]. Therefore, the knowledge is transformed into a set of input-

output pairs. The task in this work is to model a FS that describes the input-output behavior represented by the 

input-output pairs and apply the model to Liver Disorders. We will model the FS by first assigning its structure 

and then tuning its parameters [Jose et al. (1999)]. To simulate the modeling system, need a mathematical model 

of the Liver Disorders that is described by linguistic variables and its membership functions (MFs) [Chai et al. 

(2009)]. We note that the fuzzy modeler can successfully control and handle the real data of any problem. As 

well as, the prediction accuracy is improved by defining more FSs for each input variable [Marza and Seyyedi 

(2008)]. The advantage of using the FS is that the parameters of MFs have clear physical meanings and we have 

models to choose good initial values for them [Doğan et al. (2007). We can recover the fuzzy if-then rules that 
model the FS [Belohlavek and Klir (2011)]. These recovered fuzzy if-then rules may help to demonstrate the 

modeled FS in a user-friendly manner. The work is divided into four Sections. Section 1 introduces the 

fundamental concepts and principles in the general field of fuzzy theory that are particularly useful in FSs and 

ANFIS [Sivanandam and Deepa (2008)]. In Section 2, we have provided the detailed mathematical formulas of 

the FIS, and we construct interfaces between the FIS and the environment using fuzzifier and defuzzifier models 

[Jandaghi et al. (2010)].  

In the first part of this Section, we propose and extend the model of  the FS, the work of Hndoosh et al. 

(2013) and Wang (1998), from 2-dimention to N-dimension using Mamdani's minimum implication with the 

minimum inference system, the singleton fuzzifier, and center average defuzzifier [Rojas (1996)]. In the second  



    Fuzzy mathematical models for the analysis of fuzzy systems with application to liver disorders 

www.iosrjournals.org                                                    72 | Page 

part, we have provided the theorem for accuracy of a proposed model [Hndoosh et al. (2012), (2013), and 

(2014)]. This approach requires N-pieces of information in order to model FS to satisfy any pre-specified degree 

of accuracy [Kamel and Hassan (2009)]. As well as, we have adapted the structure of the FS and modeled of an 
adaptive FS using a neural network through the third part of this Section [Singh et al. (2009)], [Shing, and Jang 

(1993)]. In Section 3, we have applied all the previous concepts and models on a real application to Liver 

Disorders [Sug (2012) and Gulia et al. (2014)], and we have structured of the applied model at the first part. 

Second and third subsection, provided discussion and results for the model of the FS with Mamdani and ST 

models and the adaptive FS using neural network, respectively. Consequently, obtained good results of the 

models, and created programs for the different models using „MATLAB‟. Concluding remarks are present in 

Section 4. Finally, Appendix is provided the representation of results of the FIS with the Mamdani and ST 

models, and the results of the ANFIS with their errors through Table 3.  

 

II. Proposal Of A New Model Of A Fuzzy System On N-Dimensions 
In this section, proposed a model of a fuzzy system, that is extension of the work of Hndoosh et al. 

(2013) and Wang (1997), from 2-dimention to N-dimension [Ruan and Wang (1997)]. Consider the general 

membership function of fuzzy set, 𝐴, is a continuous function in R given by: 

𝜇 𝑥; 𝑎, 𝑏, 𝑐, 𝑑 =

 
 
 

 
 

0            𝑖𝑓𝑥 < 𝑎
𝑎(𝑥)      𝑖𝑓𝑎 ≤ 𝑥 < 𝑏
1            𝑖𝑓𝑏 ≤ 𝑥 ≤ 𝑐
𝑑(𝑥)     𝑖𝑓𝑐 < 𝑥 ≤ 𝑑

0             𝑖𝑓𝑑 < 𝑥

                                                                                                  (1) 

where  𝑎, 𝑑 ⊂ 𝑅 𝑎𝑛𝑑 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑, 0 ≤ 𝑎 𝑥 ≤ 1 a non-decreasing function is ∈  𝑎, 𝑏  𝑎𝑛𝑑 0 ≤ 𝑑 𝑥 ≤ 1 is 

a non-increasing function ∈ (𝑐, 𝑑].  
If fuzzy sets 𝐴1 , 𝐴2 , … , 𝐴𝑁 ∈ 𝑊 ⊂ 𝑅 then, they are called:  

1. Complete on 𝑊, if there exists Ak  such that 𝜇𝐴𝑘 (𝑥) > 0, for any 𝑥 ∈ 𝑊.  

2. Consistent on 𝑊 if 𝜇𝐴𝑘 𝑥 = 1 for some 𝑥 ∈ 𝑊 implies that  𝜇𝐴𝑗  𝑥 = 0, for all 𝑘 ≠ 𝑗. 

3. Normal, consistent and complete with general MFs,  𝜇𝐴𝑗  𝑥; 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗  . If 𝐴
1 < 𝐴2 < ⋯ < 𝐴𝑁 , then  

𝑐𝑗 ≤ 𝑎𝑗 +1 < 𝑑𝑗 ≤ 𝑏𝑗+1 , 𝑓𝑜𝑟  𝑗 = 1, 2,… , 𝑁 − 1. 

In the next section, we will mode a particular type for medical application of Liver Disorders that have 

some properties [Belohlavek and Klir (2011)], and consider N-inputs fuzzy systems. Now the proposed model is 

as the following: 

 

2.1 The Proposed Model 

Let 𝐺 𝑥  be defined 𝐺 𝑥 : 𝑋 ⊂ 𝑅𝑛 → 𝑅, that is, a function on the compact set 𝑋 =  𝛼1 , 𝛽1 × …×
[𝛼𝑛 , 𝛽𝑛 ] and the analytic formula of 𝐺 𝑥  be unknown. Suppose that for any 𝑥 ∈ 𝑈, we can obtain 𝐺 𝑥 . Now, 

to model a fuzzy system that approximates 𝐺 𝑥  is main task and model of a fuzzy system as follows: 

 

Step 1: 

Define 𝑁𝑗   𝑗 = 1,2, . . , 𝑛  fuzzy sets 𝐴𝑗
1 , 𝐴𝑗

2 , … , 𝐴
𝑗

𝑁𝑗
∈  𝛼𝑗 , 𝛽𝑗  , which are normal, consistent, and complete with 

triangular MFs 𝜇𝐴𝑗
1 𝑥𝑗 ; 𝑎𝑗

1 , 𝑏𝑗
1 , 𝑐𝑗

1 ,… , 𝜇
𝐴
𝑗

𝑁𝑗  𝑥𝑗 ; 𝑎
𝑗

𝑁𝑗 , 𝑏
𝑗

𝑁𝑗 , 𝑐
𝑗

𝑁𝑗 , and 𝐴𝑗
1 < 𝐴𝑗

2 < ⋯ < 𝐴
𝑗

𝑁𝑗
 with  𝑎𝑗

1 = 𝑏𝑗
1 =

𝛼𝑗  and 𝑏
𝑗

𝑁𝑗 = 𝑐
𝑗

𝑁𝑗 = 𝛽𝑗 , which, 

 𝑒1
1 = 𝛼1 , 𝑒1

𝑁1 = 𝛽1 , and 𝑒1
𝑗

= 𝑏1
𝑗
  for  𝑗 = 2, 3,… , 𝑁1 − 1, 

 𝑒2
1 = 𝛼2 , 𝑒2

𝑁2 = 𝛽2 , and 𝑒1
𝑗

= 𝑏2
𝑗
  for  𝑗 = 2, 3, … , 𝑁2 − 1,                                                                            (2) 

 : 

 𝑒𝑛
1 = 𝛼𝑛 , 𝑒𝑛

𝑁𝑛 = 𝛽𝑛 , and 𝑒1
𝑗

= 𝑏1
𝑗
  for  𝑗 = 2, 3, … , 𝑁𝑛 − 1. 

 

Step 2:  

Construct  𝐼 = 𝑁1 × 𝑁2 ×…×𝑁𝑛  fuzzy if-then rules in the following form: 

𝑅𝑋
𝑗1…𝑗𝑛 ∶ IF 𝑥1   is  𝐴1

𝑗1  and 𝑥2   is  𝐴2
𝑗2  and…and 𝑥𝑛  is  𝐴𝑛

𝑗𝑛   Then  𝑦 is  𝐵𝑗1…𝑗𝑛 ,                                                         (3) 

where  𝑗1 = 1, 2, … , 𝑁1, 𝑗2 = 1, 2,… , 𝑁2  ,… , 𝑗𝑛 = 1, 2,… , 𝑁𝑛 , and the center of the fuzzy set  𝐵𝑗1…𝑗𝑛 , denoted 

by  𝑦 𝑗1…𝑗𝑛 , is chosen as: 

𝑦 𝑗1…𝑗𝑛 = 𝐺 𝑒1
𝑗1 , … , 𝑒𝑛

𝑗𝑛                                                                                                                                                           (4)  

This is the case when (3) depends on the Mamdani fuzzy rule [Chai et al. (2009)], and the antecedent of our 

model is connected by “and” [Sivanandam and Deepa (2008)], [Marza and Seyyedi (2008)], then the truth-value  

evaluation is given by: 
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𝜗𝑖 = 𝜏  𝜇
𝐴1
𝑗1…𝑗𝑛 ,𝑖 𝑥1   , 𝜇𝐴2

𝑗1…𝑗𝑛 ,𝑖 𝑥2   ,… , 𝜇
𝐴𝑛
𝑗1…𝑗𝑛 ,𝑖 𝑥𝑛                                                                                           (5) 

Therefore, from 𝜇𝐵𝑖    𝑦 = 𝑡  𝜗𝑖 , 𝜇𝐵𝑖 𝑦  , ∀𝑦 ∈ 𝑅, the fuzzy inference produces the fuzzy set of output by: 

𝜇𝐵𝑗1…𝑗𝑛 ,𝑖             𝑦 = 𝑡  𝜗𝑖 , 𝜇𝐵𝑗1…𝑗𝑛 ,𝑖 𝑦  ∀𝑦 ∈ 𝑅                                                                                                                          (6) 

The consequents of all the rules are aggregated in the consequents by the „max‟ function as: 

𝜇𝐵𝑗1…𝑗𝑛           𝑦 = 𝑠(𝜇𝐵𝑗1…𝑗𝑛 ,1 𝑦 , 𝜇𝐵𝑗1…𝑗𝑛 ,2 𝑦 ,… , 𝜇𝐵𝑗1…𝑗𝑛 ,𝑖 𝑦 )                                                                                           (7)  

However, when the consequent of rule is a linear function, then the output of the Sugeno rule depends on 

function as follows: 

𝑦 𝑗1…𝑗𝑛 = 𝑓𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑛  ,                                                                                                                                                      (8) 

where 𝑓𝑖  is linear function base on 𝑥𝑗 , that is defined as: 

𝑓𝑖 𝑥1 , 𝑥2 ,… , 𝑥𝑛  = 𝑎1
𝑖 𝑥1 + 𝑎2

𝑖 𝑥2 + ⋯+ 𝑎𝑛
𝑖 𝑥𝑛 + 𝑎𝑛+1

𝑖  ,                                                                                                   (9) 

where 𝑎𝑗
𝑖  are the parameters, and can be computed by the least square model. 

 

Step3: 

Constructing the fuzzy system 𝑓 𝑥  from the 𝑁1 ×𝑁2 ×…×𝑁𝑛  rules of (4) using Mamdani's minimum 

implication (MMI) (10a) with the minimum inference system (MIS) (10b), the Singleton fuzzifier (SF) (11), and 

the Center Average Defuzzifier (CAD) (12), are as follows:  

 𝜇𝑄𝐼𝑀  𝑥, 𝑦 = 𝑚𝑖𝑛[𝜇𝐴1
 𝑥 , 𝜇𝐴2

 𝑦 ], 𝑄𝐼𝑀 ∈ 𝑋 × 𝑌                                                                                            (10a) 

𝜇𝐵 ′  𝑦 = 𝑚𝑎𝑥
∀ 𝑖

 𝑠𝑢𝑝
𝑥∈𝑋

𝑚𝑖𝑛  𝜇𝐴′  𝑥 , 𝜇𝐴1
𝑖  𝑥1 ,… , 𝜇𝐴𝑛𝑖  𝑥𝑛  ,𝜇𝐵𝑖 𝑦                                                                             (10b) 

𝜇𝐴′  𝑥 =  
1      𝑖𝑓    𝑥 = 𝑥∗

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑐𝑒
                                                                                                                                                  (11) 

𝑦∗ =
 𝑦 𝑖𝑤𝑖
𝐼
𝑖=1

 𝑤𝑖
𝐼
𝑖=1

                                                                                                                                                                      (12) 

Therefore, we obtain: 

𝑓 𝑥 =

 … 𝑦 𝑗1…𝑗𝑛   𝑚𝑖𝑛  𝜇
𝐴1
𝑗1
 𝑥1 ,…,𝜇

𝐴𝑛
𝑗𝑛

(𝑥𝑛 )  
𝑁𝑛
𝑗𝑛=1

𝑁1
𝑗1=1

 …  𝑚𝑖𝑛  𝜇
𝐴1
𝑗1
 𝑥1 ,…,𝜇

𝐴𝑛
𝑗𝑛 (𝑥𝑛 )  

𝑁𝑛
𝑗𝑛=1

𝑁1
𝑗1=1

                                                                                                     (13)  

Since the fuzzy sets 𝐴𝑗
1 , … , 𝐴

𝑗

𝑁𝑗
 are complete at every  𝑥 ∈ 𝑋, then there exist  𝑗1 , 𝑗2 , … , 𝑗𝑛  such that: 

𝑚𝑖𝑛  𝜇
𝐴1
𝑗1 𝑥1 , 𝜇𝐴2

𝑗2  𝑥2 ,… , 𝜇
𝐴𝑛
𝑗𝑛 (𝑥𝑛 ) ≠ 0.                                                                                                                    (14) 

Consequently, the fuzzy system (13) is well defined. From step 2, we note that the antecedent of the 

rules (4) constitute all the possible sets of the fuzzy sets defined for each input variable [Hndoosh (2013)]. The 

total number of rules is Nn , that increases exponentially with the dimension of the input space [Jandaghi (2010)]. 

In the second part, we explain the accuracy of the f x  modeled above on the unknown function G x , is 

explained [Nayak (2004)], [Kamel and Hassan (2009)]. Here extended the accuracy of the fuzzy system from 2-

dimention to N-dimention, as well as changed the type of fuzzy inference system to a minimum inference 
system to suit any application [Wang (1997)]. 

 

1.2. Theorem (The Fuzzy System Accuracy for the Proposed Model) 

Let  𝑓 𝑥  be the fuzzy system in (13) and 𝐺 𝑥  be the unknown function in (4). If 𝐺 𝑥  is continuously 

differentiable on  𝑋 =  𝛼1 , 𝛽1 ×  𝛼2 , 𝛽2 × …× [𝛼𝑛 , 𝛽𝑛 ], then: 

 𝐺 − 𝑓 ∞ ≤  
𝜕𝐺

𝜕𝑥1

 
∞

ℎ1 +  
𝜕𝐺

𝜕𝑥2

 
∞

ℎ2 +⋯+  
𝜕𝐺

𝜕𝑥𝑛
 
∞

 ℎ𝑛  ,                                                                                      (15) 

 

where the infinite norm  .  ∞  is defined as:  𝑑(𝑥) ∞ = 𝑠𝑢𝑝𝑥∈𝑋  𝑑(𝑥)  𝑎𝑛𝑑  ℎ𝑗 = 𝑚𝑎𝑥1≤𝑘≤𝑁𝑗
 𝑒𝑗
𝑘+1 − 𝑒𝑗

𝑘  ,  𝑗 =

1, 2, …,𝑛. 
Proof: 

Let 𝑋𝑗1…𝑗𝑛 = [𝑒1
𝑗1 , 𝑒1

𝑗1+1
] × [𝑒2

𝑗2 , 𝑒2
𝑗2+1

] × …× [𝑒𝑛
𝑗𝑛 , 𝑒𝑛

𝑗𝑛+1
], where 𝑗1 = 1,2,… , 𝑁1 − 1, 𝑗2 = 1, 2, … , 𝑁2 − 1,…,   

𝑗𝑛 = 1, 2,… , 𝑁𝑛 − 1. Since  𝛼𝑗 , 𝛽𝑗  = [𝑒𝑗
1 , 𝑒𝑗

2] [𝑒𝑗
2 , 𝑒𝑗

3] … [𝑒
𝑗

𝑁𝑗−1
, 𝑒
𝑗

𝑁𝑗
], 𝑗 = 1, 2, … , 𝑛., then: 

𝑋 =  𝛼1 , 𝛽1 ×  𝛼2 , 𝛽2 × …×  𝛼𝑛 , 𝛽𝑛  =   …  𝑋𝑗1𝑗2…𝑗𝑛

𝑁𝑛−1

𝑗𝑛=1

,                                                                       (16)

𝑁2−1

𝑗2=1

𝑁1−1

𝑗1=1
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which implies that for any 𝑥 ∈ 𝑋, there exists  𝑋𝑗1…𝑗𝑛  such that 𝑥 ∈ 𝑋𝑗1…𝑗𝑛 .  

Now suppose 𝑥 ∈ 𝑋𝑗1…𝑗𝑛 , that is  𝑥1 ∈ [𝑒1
𝑗1 , 𝑒1

𝑗1+1
], 𝑥2 ∈ [𝑒2

𝑗2 , 𝑒2
𝑗2+1

],…, 𝑥𝑛 ∈ [𝑒𝑛
𝑗𝑛 , 𝑒𝑛

𝑗𝑛+1
] (since x fixed, 𝑗𝑛  are 

also fixed in the sequel). Since the fuzzy sets  𝐴1
1 , 𝐴1

2 , … , 𝐴1
𝑁1  are normal, consistent, and complete, at least one 

and at most two, 𝜇
𝐴1
𝑘1 𝑥1  are non-zero for 𝑘1 = 1,… , 𝑁1. From the definition of  𝑒1

𝑗1 𝑗1 = 1, 2,… , 𝑁1 − 1 , 

these two possible non-zero 𝜇
𝐴1
𝑘1  𝑥1 

′s are 𝜇
𝐴1
𝑗1  𝑥1  and 𝜇

𝐴1
𝑗1+1 𝑥1 . Similarly upto, the two possible non-zero 

𝜇
𝐴𝑛
𝑘𝑛  𝑥𝑛  

′𝑠  𝑓𝑜𝑟 𝑘𝑛 = 1,… , 𝑁𝑛  are 𝜇
𝐴𝑛
𝑗𝑛  𝑥𝑛   and 𝜇

𝐴𝑛
𝑗𝑛+1 𝑥𝑛  . Hence, the fuzzy system 𝑓 𝑥  of (16) is 

simplified as the following: 

𝑓 𝑥 =

 … 𝑦 𝑘1…𝑘𝑛  𝑚𝑖𝑛 𝜇
𝐴1
𝑘1 𝑥1 ,   𝜇𝐴2

𝑘2 𝑥2 ,… , 𝜇
𝐴𝑛
𝑘𝑛  𝑥𝑛    

𝑗𝑛+1
𝑘𝑛=𝑗𝑛

𝑗1+1
𝑘1=𝑗1

 … 𝑚𝑖𝑛 𝜇
𝐴1
𝑘1 𝑥1 ,   𝜇𝐴2

𝑘2 𝑥2 ,… , 𝜇
𝐴𝑛
𝑘𝑛  𝑥𝑛   

𝑗𝑛+1
𝑘𝑛=𝑗𝑛

𝑗1+1
𝑘1=𝑗1

                                                   17  

From (4), we obtain: 

𝑓 𝑥 =  …  

 
 
 
 
 𝑚𝑖𝑛  𝜇

𝐴1
𝑘1  𝑥1 ,…,   𝜇

𝐴𝑛
𝑘𝑛  𝑥𝑛   

 … 𝑚𝑖𝑛  𝜇
𝐴1
𝑘1  𝑥1 , . . . ,   𝜇

𝐴𝑛
𝑘𝑛  𝑥𝑛   

𝑗𝑛+1
𝑘𝑛=𝑗𝑛

𝑗1+1
𝑘1=𝑗1  

 
 
 
 𝑗𝑛+1

𝑘𝑛=𝑗𝑛

𝑗1+1

𝑘1=𝑗1

∗ 𝐺 𝑒1
𝑘1 ,… , 𝑒𝑛

𝑘𝑛                                    18  

∵  …   
𝑚𝑖𝑛  𝜇

𝐴1
𝑘1  𝑥1 , . . ,   𝜇

𝐴𝑛
𝑘𝑛 (𝑥𝑛 ) 

 … 𝑚𝑖𝑛  𝜇
𝐴1
𝑘1 𝑥1 , . . ,   𝜇

𝐴𝑛
𝑘𝑛 (𝑥𝑛 ) 

𝑗𝑛+1
𝑘𝑛=𝑗𝑛

𝑗1+1
𝑘1=𝑗1

 

𝑗𝑛+1

𝑘𝑛=𝑗𝑛

𝑗1+1

𝑘1=𝑗1

= 1                                                                     (19) 

we have: 

 𝐺 𝑥 − 𝑓 𝑥  ≤  …   
𝑚𝑖𝑛  𝜇

𝐴1
𝑘1 𝑥1 ,…,   𝜇

𝐴𝑛
𝑘𝑛 (𝑥𝑛 ) 

 … 𝑚𝑖𝑛  𝜇
𝐴1
𝑘1  𝑥1 ,…,   𝜇

𝐴𝑛
𝑘𝑛 (𝑥𝑛 ) 

𝑗𝑛+1
𝑘𝑛=𝑗𝑛

𝑗1+1
𝑘1=𝑗1

 

𝑗𝑛+1

𝑘𝑛=𝑗𝑛

𝑗1+1

𝑘1=𝑗1

∗  𝐺 𝑥 − 𝐺 𝑒1
𝑘1 , … , 𝑒𝑛

𝑘𝑛    

                            ≤ 𝑚𝑎𝑥
𝑘1=𝑗1:𝑗1+1

:
𝑘𝑛=𝑗𝑛 :𝑗𝑛+1

 𝐺 𝑥 − 𝐺 𝑒1
𝑘1 , … , 𝑒𝑛

𝑘𝑛                                                                                                      (20) 

From the Mean Value model, may be written (20) as: 

 𝐺(𝑥) − 𝑓(𝑥) ≤ 𝑚𝑎𝑥
𝑘1=𝑗1 ,𝑗1+1

:
𝑘𝑛=𝑗𝑛 ,𝑗𝑛+1

  
𝜕𝐺

𝜕𝑥1

 
∞

 𝑥1 − 𝑒1
𝑘1  +   

𝜕𝐺

𝜕𝑥2

 
∞

 𝑥2 − 𝑒2
𝑘2  +⋯+  

𝜕𝐺

𝜕𝑥𝑛
 
∞

 𝑥𝑛 − 𝑒𝑛
𝑘𝑛               (21) 

Since  𝑥 ∈ 𝑋𝑗1…𝑗𝑛 , means that 𝑥1 ∈ [𝑒1
𝑗1 , 𝑒1

𝑗1+1
], 𝑥2 ∈ [𝑒2

𝑗2 , 𝑒2
𝑗2+1

]… 𝑥𝑛 ∈ [𝑒𝑛
𝑗𝑛 , 𝑒𝑛

𝑗𝑛+1
], we have, 

 𝑥1 − 𝑒1
𝑘1  ≤  𝑒1

𝑗1+1
− 𝑒1

𝑗1  ,  𝑥2 − 𝑒2
𝑘2  ≤  𝑒2

𝑗2+1
− 𝑒2

𝑗2  … , 𝑎𝑛𝑑  𝑥𝑛 − 𝑒𝑛
𝑘𝑛  ≤  𝑒𝑛

𝑗𝑛+1
− 𝑒𝑛

𝑗𝑛   for  𝑘1 = 𝑗1 , 𝑗1 +

1, 𝑘2 = 𝑗2 , 𝑗2 + 1, …, and 𝑘𝑛 = 𝑗𝑛 , 𝑗𝑛 + 1 
Then (21) becomes: 

 𝐺 𝑥 − 𝑓 𝑥  ≤  
𝜕𝐺

𝜕𝑥1

 
∞

 𝑒1
𝑗1+1

− 𝑒1
𝑗1  +  

𝜕𝐺

𝜕𝑥2

 
∞

 𝑒2
𝑗2+1

− 𝑒2
𝑗2  +⋯+  

𝜕𝐺

𝜕𝑥𝑛
 
∞

 𝑒𝑛
𝑗𝑛+1

− 𝑒𝑛
𝑗𝑛                        (22) 

Since  𝑑(𝑥) ∞ = 𝑠𝑢𝑝
𝑥∈𝑋

  𝑑(𝑥)  then  𝐺 − 𝑓 ∞ = 𝑠𝑢𝑝 
𝑥∈𝑋

 𝐺 − 𝑓 , we get: 

 𝐺 − 𝑓 ∞ ≤  
𝜕𝐺

𝜕𝑥1

 
∞

𝑚𝑎𝑥
1≤𝑗1≤𝑁1−1 

 𝑒1
𝑗1+1

− 𝑒1
𝑗1  +⋯+  

𝜕𝐺

𝜕𝑥𝑛
 
∞

𝑚𝑎𝑥
1≤𝑗𝑛≤𝑁𝑛−1 

 𝑒𝑛
𝑗𝑛+1

− 𝑒𝑛
𝑗𝑛   

 

∴  𝐺 − 𝑓 ∞ ≤  
𝜕𝐺

𝜕𝑥1

 
∞

ℎ1 +  
𝜕𝐺

𝜕𝑥2

 
∞

ℎ2 +⋯+  
𝜕𝐺

𝜕𝑥𝑛
 
∞

ℎ𝑛                                                                                      (23) 

From (22), we can conclude that fuzzy systems in the form of (17). 

Specifically, since  
𝜕𝐺

𝜕𝑥1
 ,  

𝜕𝐺

𝜕𝑥2
 , … ,  

𝜕𝐺

𝜕𝑥𝑛
  are finite numbers for any given 𝜀 > 0,  we can choose ℎ1 , ℎ2 , . . , ℎ𝑛  

small enough such that  
𝜕𝐺

𝜕𝑥1
 
∞
ℎ1 +  

𝜕𝐺

𝜕𝑥2
 
∞
ℎ2 +⋯+ 

𝜕𝐺

𝜕𝑥𝑛
 
∞
ℎ𝑛 < 𝜀. Hence from (15) we have: 

𝑠𝑢𝑝 𝑥∈𝑋   𝐺 − 𝑓 =  𝐺 − 𝑓 ∞ < 𝜀                                                                                                                                   (24)  

From (23), we can show that, in order to model a fuzzy system with a pre-specified accuracy, we must know the 

bounds of the derivatives of 𝐺(𝑥) with respect to  𝑥1 ,  𝑥2  , … ,  𝑥𝑛 , that is  
𝜕𝐺

𝜕𝑥1
 
∞

,  
𝜕𝐺

𝜕𝑥2
 
∞

, … ,  
𝜕𝐺

𝜕𝑥𝑛
 
∞

. In the 

model process, we need to know the value of  𝐺 𝑥   at 𝑥, where  

𝑥 =  𝑒1
𝑗1 , 𝑒2

𝑗2 , … , 𝑒𝑛
𝑗𝑛    for  𝑗1 = 1, 2,… , 𝑁1 , 𝑗2 = 1, 2, … , 𝑁2 , … , 𝑗𝑛 = 1, 2, … , 𝑁𝑛 .                                      (25) 
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Therefore, this approach requires these 𝑁 pieces of information in order for the model fuzzy system, to satisfy 

any pre-specified degree of accuracy. 
 

1.3. Model of an Adaptive Fuzzy System Using a Neural Network 
In this section, we adapt the structure of the fuzzy system that is specified with the structure of some 

parameters [Singh et al. (2009)], [Shing and Jang (1993)]. We specify the structure of the fuzzy system to be 

modeled. Here, we choose the fuzzy system with a MIS, a SF, a CAD, and a Triangular MF [Samandar (2011)], 

then, we obtain:  

𝑓 𝑥 =

 𝑦 𝑖  𝑚𝑖𝑛
∀𝑗

𝜇
𝐴𝑗
𝑖  𝑥𝑗   

𝐼
𝑖=1

  𝑚𝑖𝑛
∀𝑗

𝜇𝐴𝑗
𝑖  𝑥𝑗   

𝐼
𝑖=1

=

 𝑦 𝑖  𝑚𝑖𝑛
∀𝑗

 𝑚𝑎𝑥  𝑚𝑖𝑛
∀𝑗

 
𝑥𝑗 − 𝑎𝑗

𝑖

𝑏𝑗
𝑖 − 𝑎𝑗

𝑖 ,   
𝑐𝑗
𝑖 − 𝑥𝑗
𝑐𝑗
𝑖 − 𝑏𝑗

𝑖 , 0   𝐼
𝑖=1

  𝑚𝑖𝑛
∀𝑗

 𝑚𝑎𝑥  𝑚𝑖𝑛
∀𝑗

 
𝑥𝑗 − 𝑎𝑗

𝑖

𝑏𝑗
𝑖 − 𝑎𝑗

𝑖 ,   
𝑐𝑗
𝑖 − 𝑥𝑗
𝑐𝑗
𝑖 − 𝑏𝑗

𝑖 , 0   𝐼
𝑖=1

                                 (26) 

where I is fixed, and 𝑦 𝑖 , 𝑎𝑗
𝑖 , 𝑏𝑗

𝑖 , 𝑐𝑗
𝑖   are free parameters. The fuzzy system (26) has not been modeled because the 

parameters y i , aj
i , bj

i , cj
i  are not specified [Wang (1997)]. In order to determine these parameters in some optimal 

manner, it is helpful to represent the fuzzy system 𝑓 𝑥  of (26) as a feed-forward network [Jose et al. (1999)]. 

Specifically, the mapping from the input 𝑥 ∈ 𝑈 ⊂ 𝑅𝑛  to the output 𝑓 𝑥 ∈ 𝑉 ⊂ 𝑅 can be performed according 

to operations [Doğan et al. (2007)]. Note that, the input 𝑥 is passed through a minimum triangular operator to 

become: 

𝑧𝑖 = 𝑚𝑎𝑥  𝑚𝑖𝑛
∀𝑗

 
𝑥𝑗−𝑎𝑗

𝑖

𝑏𝑗
𝑖−𝑎𝑗

𝑖 ,   
𝑐𝑗
𝑖−𝑥𝑗

𝑐𝑗
𝑖−𝑏𝑗

𝑖 , 0 , where  zi  are passed through a summation operator.  

Let 𝐾 =  𝑧𝑖  𝐼
𝑖=1 and 𝐿 =  𝑦 𝑖  𝑧𝑖𝐼

𝑖=1 ; therefore, the output of the fuzzy system is computed as 𝑓 𝑥 = 𝐿 𝐾 . 
Consequently, we summarize the procedures to model a fuzzy system that depends on layers of network as the 

following: 

 

Step1: Structure specification and initial parameters 

Select the fuzzy system (26) and determine the number of rule [Rameshkumar and Arumugam (2011)]. 

The larger number of rule, results more parameters and more computation, but gives better accuracy. 

Specify the initial parameters 𝑦 𝑖(0), 𝑎𝑗
𝑖(0), 𝑏𝑗

𝑖(0), 𝑐𝑗
𝑖(0), then the initial fuzzy system becomes as in (27). These 

initial para-meters may be determined according to the linguistic rules from human experts as in our application. 

 

𝑓 𝑥 =

 … 𝑦 𝑗1…𝑗𝑛 (0)  𝑚𝑖𝑛 𝑚𝑎𝑥 𝑚𝑖𝑛
∀𝑘

 
𝑥𝑘0
𝑝
− 𝑎𝑘

𝑗1…𝑗𝑛 (0)

𝑏𝑘
𝑗1𝑗2𝑗3(0) − 𝑎𝑘

𝑗1𝑗2𝑗3 (0)
,   

𝑐𝑘
𝑗1…𝑗𝑛  0 − 𝑥𝑘0

𝑝

𝑐𝑘
𝑗1…𝑗𝑛 (0) − 𝑏𝑘

𝑗1…𝑗𝑛 (0)
 , 0   

𝑁𝑛
𝑗𝑛

𝑁1
𝑗1=1

 …  𝑚𝑖𝑛 𝑚𝑎𝑥 𝑚𝑖𝑛
∀𝑘

 
𝑥𝑘0
𝑝 − 𝑎𝑘

𝑗1…𝑗𝑛 (0)

𝑏𝑘
𝑗1…𝑗𝑛 (0) − 𝑎𝑘

𝑗1…𝑗𝑛 (0)
,   

𝑐𝑘
𝑗1…𝑗𝑛  0 − 𝑥𝑘0

𝑝

𝑐𝑘
𝑗1…𝑗𝑛 (0) − 𝑏𝑘

𝑗1…𝑗𝑛 (0)
 , 0   

𝑁𝑛
𝑗𝑛

𝑁1

𝑗1=1

      (27) 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1:  Network representation of the fuzzy system 

 

 

 

  

min 

𝜇𝐴1
1  

𝜇𝐴𝑛1  

min 

𝜇𝐴1
1  

𝜇𝐴𝑛1  

𝑦 1 

𝑦 𝐼 

  𝑓 𝑥 = 𝐿 𝐾  

𝑧1 

𝑧𝐼  

K 

L f 
𝑥1 

𝑥𝑛  
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Step2: Calculating the outputs of the fuzzy system 

For a given inputs-output pair  𝑥𝑘0
𝑝

; 𝑦0
𝑝
 , 𝑝 = 1,2, ..  , 𝑘 = 1, 2, . . , 𝑛 and at the 𝑞𝑡ℎ  training stage, 𝑞 = 0, 1,…, 

present  𝑥𝑘0
𝑝

 to the input layer of the fuzzy system in Figure 1 and compute the outputs of layers, and therefore, 

we compute: 

 

First output: Every node produces MF of an input parameter. The node output 𝑜1
𝑗 𝑖  is explained by:  

𝑜1
𝑗1 = 𝜇

𝐴1
𝑗1 𝑥1 ;  𝑜1

𝑗2 = 𝜇
𝐴2
𝑗2 𝑥2 ,… , 𝑎𝑛𝑑  𝑜1

𝑗𝑛 = 𝜇
𝐴𝑛
𝑗𝑛  𝑥𝑛  ,                                                                                        (28) 

where 𝑥1 , 𝑥2 , … , 𝑥𝑛  are the inputs,   𝜇
𝐴1
𝑗1 , 𝜇

𝐴2
𝑗2 , … , 𝜇

𝐴𝑛
𝑗𝑛  are linguistic fuzzy sets related with nodes, and 𝑜1

𝑗 𝑖  is the 

degree of MFs of a fuzzy set. 

 

Second output: Every node is a fixed node, whose output is the minimum of all MFs: 

𝑜2
𝑗1…𝑗𝑛 = 𝑧𝑗1…𝑗𝑛 , 𝑧𝑗1…𝑗𝑛 = 𝑚𝑖𝑛

∀𝑗
 𝜇

𝐴𝑗
𝑗1…𝑗𝑛  𝑥𝑗    ,                                                                                                              (29) 

where 𝜇
𝐴1
𝑗1…𝑗𝑛  is declared by triangular MF, and then we obtain: 

𝑧𝑗1…𝑗𝑛 = 𝑚𝑖𝑛
∀𝑗

 𝑚𝑎𝑥  𝑚𝑖𝑛
∀𝑘

 
𝑥𝑘0
𝑝
− 𝑎𝑘

𝑗1…𝑗𝑛 (𝑞)

𝑏𝑘
𝑗1…𝑗𝑛 (𝑞) − 𝑎𝑘

𝑗1…𝑗𝑛 (𝑞)
,   

𝑐𝑘
𝑗1…𝑗𝑛  𝑞 − 𝑥𝑘0

𝑝

𝑐𝑘
𝑗1…𝑗𝑛 (𝑞) − 𝑏𝑘

𝑗1…𝑗𝑛 (𝑞)
 , 0                                  (30) 

 

Third output: Depending on (30), the 𝑗1 …𝑗𝑛
𝑡ℎ  node calculates all rules as: 

𝑜3
𝑗1…𝑗𝑛 = 𝑧 𝑗1…𝑗𝑛  𝑥 =

𝑧𝑗1…𝑗𝑛

 … 𝑧𝑗1…𝑗𝑛
𝑁𝑛
𝑗𝑛=1

𝑁1
𝑗1=1

                                                                                                                   (31) 

 

 Fourth output: Every node 𝑗1 …𝑗𝑛  is an adaptive node with a node MF of output. 

𝑜4
𝑗1…𝑗𝑛 = 𝑧 𝑗1…𝑗𝑛  𝑦 𝑗1…𝑗𝑛 ,                                                                                                                                                         (32)  

where  𝑦 𝑗1…𝑗𝑛 = 𝑓𝑗1…𝑗𝑛
 𝑥1 , 𝑥2 , … , 𝑥𝑛  , and from (9), we get: 

𝑦 𝑗1…𝑗𝑛 = 𝛼1
𝑗1…𝑗𝑛𝑥1 + 𝛼2

𝑗1…𝑗𝑛𝑥2 + ⋯+ 𝛼𝑛
𝑗1…𝑗𝑛𝑥𝑛 + 𝛼𝑛+1

𝑗1…𝑗𝑛 ,                                                                                         (33) 

where 𝛼𝑗
𝑗1…𝑗𝑛 ,  𝑗 = 1, … , 𝑛 + 1.  , is the parameter set of the node. 

 

Fifth output: The single node is a fixed node labeled    , which computes the final output as the summation of 

all result 𝑜4
𝑗1…𝑗𝑛  

𝑜5
𝑗1…𝑗𝑛 =  … 

𝑧𝑗1…𝑗𝑛

 … 𝑧𝑗1…𝑗𝑛
𝑁𝑛
𝑗𝑛

𝑁1
𝑗1=1

𝑁𝑛

𝑗𝑛=1

𝑁1

𝑗1=1

 𝛼1
𝑗1…𝑗𝑛 𝑥1 + 𝛼2

𝑗1…𝑗𝑛𝑥2 + 𝛼𝑛
𝑗1…𝑗𝑛𝑥𝑛 + 𝛼𝑛+1

𝑗1…𝑗𝑛                                         (34) 

Suppose, 

𝐾 =  …  𝑧𝑗1…𝑗𝑛

𝑁𝑛

𝑗𝑛=1

𝑁1

𝑗1=1

 

𝐿 =  … 𝑧𝑗1…𝑗𝑛 𝛼1
𝑗1…𝑗𝑛𝑥1 + 𝛼2

𝑗1…𝑗𝑛𝑥2 + 𝛼𝑛
𝑗1…𝑗𝑛𝑥𝑛 + 𝛼𝑛+1

𝑗1…𝑗𝑛 

𝑁𝑛

𝑗𝑛=1

𝑁1

𝑗1=1

                                                                        (35) 

Consequently, the final output is obtained as: 

𝑓 𝑥 =
𝐿

𝐾
.                                                                                                                                                                                (36) 

Here, noted that  𝑦 𝑗1…𝑗𝑛  are free parameters to be modeled. When select the initial parameters 𝜃(1), and there 

are linguistic rules from experts, then choose  𝑦 𝑗1…𝑗𝑛  1  to be the centers of the then part fuzzy sets in these 

linguistic rules; otherwise, choose 𝜃(1) arbitrarily in the output space 𝑌 ⊂ 𝑅. In this way, we can say that the 

initial fuzzy system is constructed from experts. 

 

Step3: Update the parameters 

Use the training algorithm to compute the updated parameters 𝑦 𝑗1…𝑗𝑛  𝑞 + 1 , 𝑎𝑘
𝑗1…𝑗𝑛  𝑞 + 1 , 𝑏𝑘

𝑗1…𝑗𝑛  𝑞 + 1 , 

𝑐𝑘
𝑗1…𝑗𝑛 (𝑞 + 1), where 𝑦 = 𝑦0

𝑝
, and  𝑧𝑗1…𝑗𝑛 ,𝐾, 𝐿 and 𝑓 equal to those that computed in step2, i.e., compute the 

new parameters θ using the least squares model as: 
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𝜃 𝑝 + 1 = 𝜃 𝑝 + 𝑡 𝑝 + 1  𝑦0
𝑝
−  𝑧 𝑥𝑘0

𝑝   
𝑇

𝜃 𝑝                                                                                                     37  

in which, 

𝑡 𝑝 + 1 =
𝑃 𝑝 + 1  𝑧 𝑥𝑘0

𝑝  

 𝑃 𝑝 + 1  𝑧 𝑥𝑘0
𝑝   𝑧 𝑥𝑘0

𝑝   
𝑇

+ 1 
 ,                                                                                                            (38) 

𝑃 𝑝 + 1 = 𝑃 𝑝 −
𝑃 𝑝 𝑧 𝑥𝑘0

𝑝  

 𝑃 𝑝 𝑧 𝑥𝑘0
𝑝   𝑧 𝑥𝑘0

𝑝   
𝑇

+ 1 
𝑃 𝑝  𝑧 𝑥𝑘0

𝑝
  

𝑇

                                                                         (39) 

when 𝑝 = 1, note that  𝜃 1  is chosen using step 2, and 𝑃 1  is a large constant. The modeled fuzzy system in 

(26) with the parameters 𝑦 𝑗1…𝑗𝑛  is equal to the corresponding elements in 𝜃 𝑝 . 
 

Step4: Repeat by going to step 2 with  𝑞 = 𝑞 + 1, until the error  𝑓 − 𝑦0
𝑝 < 𝜀, or until the q equals a pre-

specified number. 

 

Step5: Repeat by going to step 2 with  𝑝 = 𝑝 + 1, 𝑝 = 1,2, …; that is, update the parameters using the next 

input-output pair  𝑥𝑘0
𝑝+1

;  𝑦0
𝑝+1 . 

Keep in mind that the parameters y j1…jn  are the centers of the fuzzy sets in the consequent parts of the rules, and 

the parameters 𝑎𝑗
𝑗1…𝑗𝑛  and 𝑐𝑗

𝑗1…𝑗𝑛  are the left and right base points, 𝑏𝑗
𝑗1…𝑗𝑛 , the centers of the triangular fuzzy sets 

in the antecedent parts of the rules [Rojas (1996)]. We can improve the fuzzy if-then rules that modeled the 

fuzzy system, and improved fuzzy if-then rules may help to explain the model fuzzy system in a user-friendly 
manner [Aik and Jayakumar (2008)]. 

 

III. Application 
Liver is the largest internal member in the human body, and it is known that the member is responsible 

for more than one hundred functions of human body. The complexity of this member makes it easily affected by 

disease of disorder. Therefore, diagnosing liver disorder disease (LDD) is a high interest to researchers and 

doctors [1], and fuzzy system has been a good intelligent model to diagnose such disease [Sug (2012) and Gulia 

et al. (2014)]. The fuzzy system has very good property that the model is easy to understand. This property of 

fuzzy system is important in case that human should understand the knowledge structures fully. This is one of 
the main reasons why fuzzy system is accepted in medical domain. There are six continuous attributes as 

dependent attributes, (Table 1 for detail of the attributes). The first five variables are all blood tests that are 

thought to be sensitive to liver disorders that might result from excessive alcohol consumption. Each line in the 

LDD_data constitutes the record of a single male individual.  

 

Table 1: The meaning of variables 

Variable 
Variable 

name 
Meaning Range 

𝑥1 mcv mean corpuscular volume  [79,103] 

𝑥2 alkphos alkaline phosphotase [35,109] 

𝑥3 sgpt alamine aminotransferase  [5,155] 

𝑥4  sgot aspartate aminotransferase  [11,68] 

𝑥5 gammagt gamma-glutamyl transpeptidase  [5,297] 

𝑥6  drinks number of half-pint equivalents of alcoholic beverages drunk per day [0,20] 

 

3.1. Structure of the Model 

Consider the multi-inputs 𝑥𝑖  ,  𝑖 = 1,2,… ,6 , with output y (disorder types of liver that contains simple 

liver disorder or acute liver disorder). A fuzzy inference system (FIS) can be defined as: 

𝐹𝐼𝑆: 𝑋 → 𝑌, 𝑤ℎ𝑒𝑟𝑒  𝑋 ⊂ 𝑅𝑛  𝑎𝑛𝑑  𝑌 ⊂ 𝑅.                                                                                                                        (40) 

The fuzzy system is composed of a fuzzifier, fuzzy rule-base, fuzzy inference, and defuzzifier. In order to apply 

a steps of FIS systematically, the inputs 𝑥1 , 𝑥2 , … , 𝑥6  with output y must be described as the following: 
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1. Inputs 

Inputs-data have treated and measured, and it becomes restricted between zero and one. The first five 
variables have five different degrees of linguistic variables: Low (L), Low Medium (LM), Medium (M), High 

Medium (HM) and High (H), while sixth input is represented by five linguistic variables, Less (Le), Less 

Average (LA), Average (A), More Average (MA) and More (Mo). 

 

2. Output 
Output-data are represented the disorder types of liver that contains two types: simple liver disorder 

(SLD) or acute liver disorder (ALD), see Figure 2.  

 

3.2. Discussion and Results of the Fuzzy System with Mamdani and ST Models 
In this part, we build the proposed fuzzy system step by step on our application:  

 

Step 1: 

Define 𝑁𝑗 ,  𝑗 = 1,2,… ,6 , where 𝑁𝑗 = 1,2,3. Let 𝐴𝑖
1 , … , 𝐴𝑖

6  is a fuzzy sets for  𝑥𝑖 , with triangular MFs, 

𝜇𝐴1
1 𝑥1; 𝑎1

1 , 𝑏1
1 , 𝑐1

1 ,… , 𝜇𝐴6
5 𝑥6; 𝑎6

5 , 𝑏6
5 , 𝑐6

5 , and 𝐴𝑗
1 < 𝐴𝑗

2 < ⋯ < 𝐴
𝑗

𝑁𝑗  with 𝑎𝑗
1 = 𝑏𝑗

1 = 0 and 𝑏
𝑗

𝑁𝑗 = 𝑐
𝑗

𝑁𝑗 = 1. 

Therefore, we can define: 

 𝑒1
1 = 0, 𝑒1

5 = 1, and 𝑒1
2 = 𝑏1

2 ,  𝑒1
3 = 𝑏1

3 ,  𝑒1
4 = 𝑏1

4 

 𝑒2
1 = 0, 𝑒2

5 = 1, and 𝑒2
2 = 𝑏2

2 ,  𝑒2
3 = 𝑏2

3 ,  𝑒2
4 = 𝑏2

4 , 
 𝑒3

1 = 0, 𝑒3
5 = 1, and 𝑒3

2 = 𝑏3
2 ,  𝑒3

3 = 𝑏3
3 ,  𝑒3

4 = 𝑏3
4 ,                                                                                         (41) 

 𝑒4
1 = 0, 𝑒4

5 = 1, and 𝑒4
2 = 𝑏4

2 ,  𝑒4
3 = 𝑏4

3 ,  𝑒4
4 = 𝑏4

4 , 
 𝑒5

1 = 0, 𝑒5
5 = 1, and 𝑒5

2 = 𝑏5
2 ,  𝑒5

3 = 𝑏5
3 ,  𝑒5

4 = 𝑏5
4 , 

 𝑒6
1 = 0, 𝑒6

3 = 1, and 𝑒6
2 = 𝑏6

2 . 
 

Figure 2a: The FIS of LD using Mamdani model Figure 2b: The FIS of LD using ST model 

 

Here the Singleton fuzzifier is defined as:  𝑆𝐹: 𝑥∗ → 𝐴′ , where 𝑥∗ =  𝑥1 , … , 𝑥6 , and the softwaer „MATLAB‟ is 

used to create the programs of our application. Six vectors of inputs with one vector of output are loaded for 100 

observations. For example, the first observation is represented as [mcv=0.8544, alkphos= 0.5088, sgpt=0.12903, 

sgot= 0.25, gammagt=0.0303, and drinks =0.025]. Consequently, we have built the first rule such as [If (mcv is 

M) and (alkphos is M) and (sgpt is L) and (sgot is LM) and (gammagt is L) and (drinks is L) Then y is SLD].  

 

Step2: 

Note that, the fuzzy rule-base consists of  I = 56  fuzzy if-then rules and the centers of (f j1…j6 ,i(x1 , … , x6)) are 

evaluated at the 729 points, and therefore, we obtain: 

Ri:

 
 
 

 
 If x1  is A1

j1 ,1
 and x2 is A2

j2 ,1
 and…and x6 is A6

j6 ,1
 Then y is Bj1…j6 ,1

If x1  is A1
j1 ,2

 and x2 is A2
j2 ,2

 and…and x6is A6
j6 ,2

 Then y is Bj1…j6 ,2

:

If x1  is A1
j1 ,I

 and x2 is A2
j2 ,I

 and…and x6 is A6
j6 ,I

                                
antecedent

Then y is Bj1…j6 ,I       
consequent

                                                               (42a)

 

Ri:

 
 
 

 
 If x1  is A1

j1 ,1
 and x2 is A2

j2 ,1
 and…and x6 is A6

j6 ,1
 Then  y is  f j1…j6 ,1 x1 , . . , x6  

If x1  is A1
j1 ,2

 and x2 is A2
j2 ,2

 and… and x6 is A6
j6 ,2

 Then  y is  f j1…j6 ,2 x1 , . . , x6 
:

If x1  is A1
j1 ,I

 and x2 is A2
j2 ,I

 and…and x6 is A6
j6 ,I

                             
antecedent

 Then y is  f j1…j6 ,I x1 , . . , x6              
consequent

                                         (42b) 
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The model (42a) is a system of Mamdani fuzzy rules, while the model (42b) is a system of Sugeno 

fuzzy rules. The sets A and B are a fuzzy sets, 𝑥ℎ  (ℎ = 1, … ,6) are an input variables, y is the output variable, 

and 𝑖 ,  𝑖 = 1,… , 𝐼 , is the number of rules. The fuzzy set A consists of,  𝐴1
𝑗1 ,… , 𝐴6

𝑗6 , fuzzy subsets. It is called 

linguistic terms that represented by triangular MFs such as (1) with b = c. The fuzzy operator “and” (t-norm) is 

used to connecting between linguistic terms in each rule of the model. The function 𝑓𝑗1 ...𝑗6 ,𝑖(𝑥1 , … , 𝑥6) is a linear 

function depends on inputs 𝑥𝑘  that defined using (9). The first five linguistic terms are represented by 𝐴ℎ
𝑗 𝑖   𝑗𝑖 =

1, 2,… , 5  that depends on linguistic variable 𝑥ℎ  (ℎ = 1, … ,5), see Figure 3, for e.g. the linguistic term for first 

input variable defined as the following: 
 

(A) The MFs of an I1 (B)  The MFs of an I2 (C)  The MFs of an I3 (D)  The MFs of an I4 

 (E)  The MFs of an I5  (F)  The MFs of an I6  (G)  The MFs of an output 

Figure 3: The representation of membership functions of inputs and output 

 

𝐴1
1 ≡ “Low”≡  𝜇𝐴1

1 (𝑥1; 0,0,0.18) , A1
2 ≡ “Low Mediam”≡  𝜇𝐴1

2 (𝑥1; 0.15,0.25,0.4) ,  𝐴1
3 ≡ “Mediam”, ≡

 𝜇𝐴1
3 (𝑥1; 0.35,0.25,0.65) ,  𝐴1

4 ≡ “High Medium”≡  𝜇
𝐴1

4 (𝑥1; 0.6,0.73,0.85)  and 𝐴1
5 ≡ “High”≡  𝜇

𝐴1
5 (𝑥1; 0.82,1,1) . 

While, we have represented the sixth linguistic term 𝐴6
𝑗 𝑖   𝑗𝑖 = 1,… , 5  that depends on linguistic variable 𝑥6  as 

the following: 

𝐴6
1 ≡ “Less”≡  𝜇𝐴6

1 (𝑥6; 0,0,0.1) , 𝐴6
2 ≡ “Less Average”≡  𝜇𝐴6

2 (𝑥6; 0.08,0.2,0.3) ,  𝐴6
3 ≡ “Average”                

≡  𝜇𝐴6
3 (𝑥6; 0.25,0.5,0.7) ,  𝐴6

4 ≡ “More Average”≡  𝜇𝐴6
4 (𝑥6; 0.6,0.7,0.83)  and 𝐴6

5 ≡ “More”≡  𝜇𝐴6
5 (𝑥6 ; 0.8,1,1) . 

Moreover, the output is described by triangular MFs, (𝜇𝐵𝑗1…𝑗6 (𝑦)), and its linguistic term that represented as the 

following:  

𝐵1 ≡ “SLD” ≡  𝜇𝐵1 (𝑦; 0,0,0.75)  and  𝐵2 ≡ “ALD”≡  𝜇𝐵2 (𝑦; 0.25,1,1) . 
The fuzzy inference process defines as the following: 

𝐹𝐼: 𝐴′ → 𝐵𝑗1…𝑗6 ,𝑖         ,                                                                                                                                                                    (43) 

where 𝐴′  is an input fuzzy set in the input space X, and  𝐵𝑗1…𝑗6 ,𝑖          the fuzzy sets in the output space Y. Each one of 

the rules specifies a fuzzy set  𝐵𝑗1𝑗2𝑗3 ,𝑖           ⊆ Y that is given by the compositional rule of inference: 

𝐵𝑗1…𝑗6 ,𝑖         =  𝐴′ ∘  𝐴𝑗
𝑗1…𝑗6 ,𝑖

→ 𝐵𝑗1…𝑗6 ,𝑖 , where 𝐴𝑗
𝑗1…𝑗6 ,𝑖

= 𝐴1
𝑗1…𝑗6 ,𝑖

× 𝐴2
𝑗1…𝑗6 ,𝑖

×…× 𝐴6
𝑗1…𝑗6 ,𝑖

                                  (44) 

Therefore, from   𝜇𝐴1
𝑖 ×…×𝐴𝑛

𝑖  𝑥1 , … , 𝑥𝑛  = 𝜇𝐴1
𝑖  𝑥1 ∗ … ∗ 𝜇𝐴𝑛𝑖

 𝑥𝑛   , we obtain  

𝜇
𝐴𝑗
𝑗1…𝑗6,𝑖 𝑥𝑗  = 𝜇

𝐴1
𝑗1…𝑗6,𝑖

×𝐴2
𝑗1…𝑗6,𝑖

×…×𝐴6
𝑗1…𝑗6,𝑖 𝑥1 ,… , 𝑥6 ,  𝑗 = 1,2,… ,6                                                                         (45) 

From  𝜇𝐵 ′  𝑦 = 𝑠𝑢𝑝
𝑥∈𝑋

  𝜇𝐴′ (𝑥)   𝜇𝑄𝐼 𝑥, 𝑦 ∔
𝑡   , the fuzzy sets 𝐵𝑗1…𝑗6 ,𝑖          are described by MF: 

𝜇𝐵𝑗1…𝑗6,𝑖             y = 𝑥∈𝑋
𝑠𝑢𝑝  𝜇𝐴′  𝑥   𝜇

 𝐴𝑗
𝑗1…𝑗6,𝑖

→ 𝐵𝑗1…𝑗6,𝑖 ∔
𝑡  𝑥, 𝑦                                                                                                     (46) 

Consequently, can be re-express (46) as the following 

𝜇𝐵𝑗1…𝑗6,𝑖             y = 𝜇
𝐴𝑗
𝑗1…𝑗6,𝑖

→𝐵𝑗1…𝑗6,𝑖 𝑥𝑗 , 𝑦 = 𝐼𝑚 𝜇
𝐴𝑗
𝑗1…𝑗6,𝑖 𝑥𝑗  ,𝜇𝐵𝑗1…𝑗6,𝑖 𝑦  ,                                                              47a  

where 𝐼𝑚(. ) is an “implementation”. Since, we used Mamdani's minimum implication (10a), therefore, we 
obtained: 
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𝐼𝑚 𝜇
𝐴𝑗
𝑗1…𝑗6,𝑖 𝑥𝑗  , 𝜇𝐵𝑗1…𝑗6,𝑖 𝑦  = 𝑚𝑖𝑛  𝜇

𝐴𝑗
𝑗1…𝑗6,𝑖 𝑥𝑗  , 𝜇𝐵𝑗1…𝑗6,𝑖 𝑦                                                                           47b  

or (47) may be written as: 

𝜇𝐵𝑗1…𝑗6,𝑖             y = 𝑚𝑖𝑛  𝜇
𝐴𝑗
𝑗1…𝑗6,𝑖 𝑥𝑗  ,𝜇𝐵𝑗1…𝑗6,𝑖 𝑦                                                                                                                 (48) 

The aggregation operator has been applied in order to get the fuzzy set 𝐵′  that uses the functions ‘max’ (s-norm) 

or ‘min’ (t-norm) depending on the type of fuzzy implication. The aggregation operator is denoted by: 

𝐵′ =  𝐵𝑗1…𝑗6 ,   𝑖           𝐼
𝑖=1   ,                                                                                                                                                             (49) 

Therefore, the membership function of  B′  is computed using the „max‟ function as the following:  

𝜇𝐵 ′  𝑦 = 𝑚𝑎𝑥
∀𝑖

  𝜇𝐵𝑗1𝑗2𝑗3,   𝑖               𝑦                                                                                                                                            (50) 

 

Stepe3: 
The defuzzifier performs a mapping as the following:  

𝑑𝑒𝑓 = 𝐵′ → 𝑓 𝑥 ,                                                                                                                                                                  (51) 

where 𝐵′  is a fuzzy set, 𝑓(𝑥) is a crisp point  𝑓(𝑥) ∈ (𝑌 ⊂ 𝑅). The center of the area is a final system output that 

is defined by the following formula: 

𝑓 𝑥 =

 … 𝑦 𝑗1…𝑗6   𝑚𝑖𝑛 𝑚𝑎𝑥  𝑚𝑖𝑛
𝑗=1:6

 
𝑥 − 𝑎𝑗

𝑗1…𝑗6

𝑏𝑗
𝑗1…𝑗6 − 𝑎𝑗

𝑗1…𝑗6
,   

𝑐𝑗
𝑗1…𝑗6 − 𝑥

𝑐𝑗
𝑗1…𝑗6 − 𝑏𝑗

𝑗1…𝑗6
 , 0   5

𝑗6=1

5
𝑗1=1

 …  𝑚𝑖𝑛 𝑚𝑎𝑥  𝑚𝑖𝑛
𝑗=1:6

 
𝑥 − 𝑎𝑗

𝑗1…𝑗6

𝑏𝑗
𝑗1…𝑗6 − 𝑎𝑗

𝑗1…𝑗6
,   

𝑐𝑗
𝑗1…𝑗6 − 𝑥

𝑐𝑗
𝑗1…𝑗6 − 𝑏𝑗

𝑗1…𝑗6
 , 0   5

𝑗6=1

5
𝑗1=1

                     (52) 

 

  

Figure 4a: Representation of  the rules editor Figure 4b: The rule view of the FIS 

  

The model of fuzzy system f x  has been built from the I rules of (42a) using Mamdani's minimum 

implication (10a) with the MIS (10b), the SF (11), and the CAD (12) (see Figure 4). We have created two 

programs; the first program depends on the Mamdani model, while the second program depends on the ST 

model. The programs of FIS have applied, that is given by (52), and obtained a good result of target. Therefore, 

we have applied the measure for accuracy of all data. The deference between the actual and target outputs is 

given by the formula as the following: 

𝐸𝑟𝑟𝑜𝑟 =  𝑅𝑣 − 𝐹𝐼𝑆𝑣  ,                                                                                                                                                        (53) 

  

(a) between I1 & I4 (b) between I1 & I6 (c) between I6 & I2 (d) between I2 & I3 (e) between I6 & I4 

Figure 5:  The output surface for the different inputs 
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where Rv is actual output values and FISv is the output target values. The value of accuracy is a very small, 

where the average error of Simple LD=0.2047 and the average error of Acute LD=0.1158, when FIS is used the  

Mamdani fuzzy rule model. While, when the FIS is used the ST fuzzy rule model, then the average error of 
Simple LD=0.1463 and the average error of Acute LD=0.0061. Table 2 represents all the results. The „surf 

view‟ tool is the surface viewer that helps view the input-output surface of the FIS. This conception is very 

helpful to understand how the system is going to behave for the entire range of values in the inputs space. Figure 

5 shows the output surface for the different inputs. 

 

3.3. Discussion and Results of the Adaptive Fuzzy System Using Neural Network 

In this Section, specify the structure of the fuzzy system to be modeled. Here, we choose the fuzzy 

system with a MIS, a SF, the CAD, and a Triangular MF that given by the model (52). Model (52) has not been 

modeled, because the free parameters 𝑦 𝑗1…𝑗6 , 𝑎𝑗
𝑗1…𝑗6 , 𝑏𝑗

𝑗1…𝑗6 , and 𝑐𝑗
𝑗1…𝑗6  are not specified. These parameters 

should be determined in order to represent the 𝑓 𝑥 . The Model of the adaptive fuzzy system using neural 

network may be express as the following: 

 

Step1: Determine the initial parameters 𝑦 𝑗1…𝑗6 0 , 𝑎𝑗
𝑗1…𝑗6 0 , 𝑏𝑗

𝑗1…𝑗6 0 , 𝑎𝑛𝑑 𝑐𝑗
𝑗1…𝑗6 0  according to the 

linguistic rules from experts, such as when  𝑗 = 𝑗ℎ = 1,  ℎ = 1,… ,6 , then  𝑎1
1 0 = 0, 𝑏1

1 0 = 0, 𝑐1
1 0 =

0.18, similarly for  ∀  𝑗ℎ , and  j and for each input. 

 

Step2: From a given inputs-output pair  𝑥1,0
𝑝

, … , 𝑥6,0
𝑝

; 𝑦0
𝑝
 , ∀ 𝑝 (observe), compute the outputs of layers as the 

following: 

 

(i) The node of the first output o1
ji  is represented by: 

𝑜1
𝑗1 = 𝜇𝐴1

1 𝑥1 ,  𝑗1 = 1,… ,5 ; 𝑜1
𝑗2 = 𝜇𝐴1

1 𝑥1 ,  𝑗2 = 5,… ,10 ;  𝑜1
𝑗3 = 𝜇𝐴1

1  𝑥1 ,  𝑗3 = 10,… ,15 ; 𝑜1
𝑗4 =

𝜇𝐴1
1 𝑥1 ,  𝑗4 = 15, … ,20 ;  𝑜1

𝑗5 = 𝜇𝐴1
1  𝑥1 ,  𝑗5 = 20,… ,25  and  𝑜1

𝑗6 = 𝜇𝐴1
1 𝑥1 ,  𝑗6 = 25,… ,30 , 

where  𝑜1
𝑗 𝑖  is the degree of MFs of a fuzzy set. 

 

(ii) To compute the second output, we should use the minimum function of all MFs as:  

𝑜2
𝑗1…𝑗6 = 𝑚𝑖𝑛

∀ 𝑗1…𝑗6

 𝜇
𝐴1
𝑗1…𝑗6  𝑥1 , 𝜇𝐴2

𝑗1…𝑗6 𝑥2 ,… , 𝜇
𝐴6
𝑗1…𝑗6 𝑥6  .                                                                                       (54) 

Since  𝜇
𝐴1
𝑗1…𝑗6  is a Triangular MF, therefore, we obtain: 

𝑜2
𝑗1…𝑗6 = 𝑚𝑖𝑛

∀ 𝑗1…𝑗6

 𝑚𝑎𝑥 𝑚𝑖𝑛
∀ 𝑘

 
𝑥𝑘0
𝑝
− 𝑎𝑘

𝑗1…𝑗6 (𝑞)

𝑏𝑘
𝑗1…𝑗6 (𝑞) − 𝑎𝑘

𝑗1…𝑗6 (𝑞)
,   

𝑐𝑘
𝑗1…𝑗6 𝑞 − 𝑥𝑘0

𝑝

𝑐𝑘
𝑗1…𝑗6 (𝑞) − 𝑏𝑘

𝑗1…𝑗6(𝑞)
 , 0  .                                     (55) 

 

(iii) For all rules, we have calculated the  𝑗1 …𝑗6
𝑡ℎ  node as: 

𝑜3
 𝑗1…𝑗6 =

 

 
 
 
 𝑚𝑖𝑛

∀𝑗
 𝑚𝑎𝑥  𝑚𝑖𝑛

∀𝑘
 

𝑥𝑘0
𝑝 − 𝑎𝑘

 𝑗1…𝑗6 𝑞 

𝑏𝑘
 𝑗1…𝑗6 𝑞 − 𝑎𝑘

 𝑗1…𝑗6 𝑞 
,   

𝑐𝑘
 𝑗1…𝑗6 𝑞 − 𝑥𝑘0

𝑝

𝑐𝑘
 𝑗1…𝑗6 𝑞 − 𝑏𝑘

 𝑗1…𝑗6 𝑞 
 , 0  

 … 𝑚𝑖𝑛
∀𝑗

 𝑚𝑎𝑥  𝑚𝑖𝑛
∀𝑘

 
𝑥𝑘0
𝑝 − 𝑎𝑘

 𝑗1…𝑗6 𝑞 

𝑏𝑘
 𝑗1…𝑗6 𝑞 − 𝑎𝑘

 𝑗1…𝑗6 𝑞 
,   

𝑐𝑘
 𝑗1…𝑗6 𝑞 − 𝑥𝑘0

𝑝

𝑐𝑘
 𝑗1…𝑗6 𝑞 − 𝑏𝑘

 𝑗1…𝑗6 𝑞 
 , 0  5

𝑗6

5
𝑗1=1

 

 
 
 
 

.       (56) 

 

(iv) The fourth output depends on a node MF of output  𝑧  𝑗1…𝑗6  with an adaptive node 𝑦  𝑗1…𝑗6, therefore, we 
obtain 

𝑜4
 𝑗1…𝑗6 = 𝑜3

 𝑗1…𝑗6𝑓 𝑗1…𝑗6
 𝑥1, 𝑥2 , … , 𝑥6                                                                                                                                 (57) 

Since  𝑓 𝑗1…𝑗6
 𝑥1, 𝑥2 , … , 𝑥6 = 𝛼1

 𝑗1…𝑗6𝑥1 + 𝛼2
 𝑗1…𝑗6𝑥2 +⋯+𝛼6

 𝑗1…𝑗6𝑥6 + 𝛼7
 𝑗1…𝑗6 , then we should determine the 

initial parameters of   𝛼𝑗
 𝑗1…𝑗6 , ∀ 𝑗 = 1,… ,7.  . 

 

(v) In order to compute the final output, we must take the summation of all results 𝑜4
 𝑗1…𝑗6 as the following: 

𝑜5
 𝑗1…𝑗6 =  …  

𝑜2
 𝑗1…𝑗6

 … 𝑜2
 𝑗1…𝑗65

𝑗6

5
𝑗1=1

5

𝑗6=1

5

𝑗1=1

∗  𝛼1
 𝑗1…𝑗6𝑥1 + 𝛼2

 𝑗1…𝑗6𝑥2 + ⋯+ 𝛼6
 𝑗1…𝑗6𝑥6 + 𝛼7

 𝑗1…𝑗6                          (58) 
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Step3: In step 2, it is specified the initial parameters of  𝑦  𝑗1…𝑗6 𝑞 ,𝑎𝑘
 𝑗1…𝑗6 𝑞 , 𝑏𝑘

 𝑗1…𝑗6 (𝑞), 𝑐𝑘
 𝑗1…𝑗6 (𝑞) and 𝑞 = 0.  

Consequently, we update these parameters at  𝑞 + 1, using the least squares model and repeat all the procedure  

in step 2 for compute 𝐾, 𝐿 and 𝑓. From (37) to (39), we compute the new parameters as follows: 

𝜃 2 = 𝜃 1 + 𝑡 2  0.462 −  𝑜2
 𝑗1…𝑗6 

𝑇
𝜃 1   

𝑡 2 =
𝑃 2   𝑜2

 𝑗1…𝑗6

 𝑃 2  𝑜2
 𝑗1…𝑗6 𝑜2

 𝑗1…𝑗6 
𝑇

+ 1 
                                                                                                                                 (59) 

𝑃 2 = 1 −
𝑃 1 𝑜2

 𝑗1…𝑗6

 𝑃 1  𝑜2
 𝑗1…𝑗6 𝑜2

 𝑗1…𝑗6 
𝑇

+ 1 
 1 ∗  𝑜2

 𝑗1…𝑗6 
𝑇
 

Similarly, we can update all parameters of  𝜃 for all training data. Repeat all procedures in step 2 with 𝑞 = 𝑞 +
1 ttil the last specific number of  𝑞 is reached. 

From the program of the AFS using a Neural Network that is given by model (52), we have obtained 

better results with the AFS using a Neural Network than the result of the FIS. We have applied the measure of 
accuracy for all data, and obtained the average error of Simple LD=0.000943, while the average error of Acute 

LD=0.0055, (see Table 2). Additionally, obtained the best average testing error of training data (0.00000679) 

with epoch 100, and the average testing error of checking data (0.03802), see Figure 6. As well as, Table 3 

presents the representation of results of the FIS with Mamdani model, the FIS with ST models, and the ANFIS 

with their errors through Appendix. 

 

  

Figure 6a:  Representation of  the errors of training 

data with 100 epoch 

Figure 6b:  Representation of  the errors of 

checking data with 100 epoch 

 

Table 2: Representation errors of Simple, and Acute Liver Disorder and average 

error for different models. 

Type of model 
Average error 

of Simple LD 

Average error 

of Acute LD 

Average error 

of training data 

FIS (Mamdani model) 0.2047 0.1158 0.1603 

FIS (ST model) 0.1463 0.0061 0.0762 

ANFIS (ST model) 0.000943 0.0055 0.0032 

 

IV. Conclusion 
This work focused on how to use the fuzzy models to solving fuzzy mathematics problems. Here 

constructed two different models, namely fuzzy inference system, and adaptive neuro-fuzzy inference system. 

Further, suggested an extension FS and ANFS at N-dimension those depended on the MMI with the MIS, the 
SF, and the CAD. It is provided the theorem for accuracy of proposed models, as well as, adapted the model of 

an adaptive FS using a neural network. In addition, we have provided a medical application of the fuzzy 

mathematics models. We have diagnosed the liver disorder disease that is a high interest to researchers of fuzzy 

modeling and fuzzy system because the liver is the largest internal member in the human body. Therefore, we 

have applied the fuzzy mathematical models on the real data to the liver disorder disease. We have presented 

discussion and results for the model of the FS with Mamdani and ST models, and the ANFIS, respectively. 

Additionally, we have used the software „MATLAB‟ in order to perform the results of different models. 

Consequently, we have gotten good results for accuracy of these models. The comparison between the three 

models the FS with Mamdani model, the ST model, and the ANFIS had presented. We have obtained the best 



    Fuzzy mathematical models for the analysis of fuzzy systems with application to liver disorders 

www.iosrjournals.org                                                    83 | Page 

result with the ANFIS. Finally, we have presented the representation of results of the different models with their 

errors through Appendix. In the future work, we can develop these models of fuzzy system to generate many 

outputs or extending the number of input variables. As well as, we can change the fuzzy inference system with 
another types, or with different type of fuzzifier or defuzzifier. 
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APENDIX 
In this Section, present the representation of results of the FIS with Mamdani model, the FIS with ST 

models, and the ANFIS with their errors.  

 

Table 3: Representation of results of FIS and ANFIS with their errors 

N0. Real 
FIS with 

(Mamdani model) 
E(FISM) 

FIS with 

( ST  model) 
E(FISST) 

ANFIS with 

(ST model) 
E(ANFISST) 

1.  1 0.915 0.085 1.27 -0.27 1.00E+00 0.00E+00 

2.  1 0.916 0.084 1.24 -0.24 1.00E+00 0.00E+00 

3.  0 0.197 -0.197 0.225 -0.225 0.00E+00 0.00E+00 

4.  0 0.222 -0.222 0.202 -0.202 0.00E+00 0.00E+00 

5.  0 0.186 -0.186 0.2 -0.2 0.00E+00 0.00E+00 

6.  1 0.907 0.093 1.2 -0.2 1.00E+00 0.00E+00 

7.  0 0.2 -0.2 0.192 -0.192 0.00E+00 0.00E+00 

8.  1 0.909 0.091 1.19 -0.19 0.998 0.002 

9.  0 0.197 -0.197 0.188 -0.188 3.04E-03 -3.04E-03 

10.  0 0.208 -0.208 0.183 -0.183 -5.85E-07 5.85E-07 

11.  0 0.238 -0.238 0.177 -0.177 1.81E-05 -1.81E-05 

12.  0 0.196 -0.196 0.177 -0.177 0.00E+00 0.00E+00 

13.  0 0.208 -0.208 0.172 -0.172 0 0 

14.  1 0.912 0.088 1.17 -0.17 9.99E-01 1.00E-03 

15.  0 0.184 -0.184 0.165 -0.165 1.21E-06 -1.21E-06 

16.  1 0.187 0.813 1.16 -0.16 1.00E+00 0.00E+00 

17.  0 0.197 -0.197 0.156 -0.156 0.00E+00 0.00E+00 

18.  0 0.202 -0.202 0.155 -0.155 -4.40E-08 4.40E-08 

19.  0 0.224 -0.224 0.151 -0.151 3.60E-07 -3.60E-07 

20.  0 0.205 -0.205 0.151 -0.151 -3.10E-08 3.10E-08 

21.  0 0.202 -0.202 0.149 -0.149 4.98E-05 -4.98E-05 

22.  0 0.185 -0.185 0.149 -0.149 -1.00E-08 1.00E-08 

23.  0 0.205 -0.205 0.148 -0.148 0.00E+00 0.00E+00 

24.  0 0.21 -0.21 0.147 -0.147 1.70E-08 -1.70E-08 

25.  0 0.197 -0.197 0.144 -0.144 2.06E-07 -2.06E-07 

26.  0 0.203 -0.203 0.144 -0.144 2.28E-03 -2.28E-03 

27.  0 0.199 -0.199 0.143 -0.143 5.26E-04 -5.26E-04 

28.  0 0.197 -0.197 0.141 -0.141 1.20E-08 -1.20E-08 

29.  0 0.216 -0.216 0.141 -0.141 0.0384 -0.0384 

30.  0 0.2 -0.2 0.14 -0.14 -1.10E-08 1.10E-08 

31.  1 0.905 0.095 1.14 -0.14 0.948 0.052 

32.  0 0.202 -0.202 0.139 -0.139 -1.10E-08 1.10E-08 

33.  0 0.199 -0.199 0.138 -0.138 -7.54E-07 7.54E-07 

34.  0 0.196 -0.196 0.138 -0.138 0 0 

35.  0 0.185 -0.185 0.136 -0.136 -4.60E-08 4.60E-08 

36.  0 0.254 -0.254 0.135 -0.135 -1.07E-07 1.07E-07 

37.  0 0.21 -0.21 0.135 -0.135 6.10E-08 -6.10E-08 

38.  0 0.2 -0.2 0.134 -0.134 0.00E+00 0.00E+00 

39.  0 0.204 -0.204 0.132 -0.132 -3.33E-07 3.33E-07 

40.  0 0.192 -0.192 0.131 -0.131 8.91E-07 -8.91E-07 

41.  0 0.174 -0.174 0.13 -0.13 9.00E-08 -9.00E-08 

42.  1 0.908 0.092 1.13 -0.13 1.00E+00 0.00E+00 

43.  1 0.917 0.083 1.13 -0.13 0.992 0.008 

44.  1 0.908 0.092 1.13 -0.13 1.00E+00 0.00E+00 

45.  0 0.405 -0.405 0.128 -0.128 -2.37E-07 2.37E-07 

46.  0 0.205 -0.205 0.126 -0.126 5.00E-09 -5.00E-09 
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47.  0 0.204 -0.204 0.126 -0.126 2.48E-07 -2.48E-07 

48.  0 0.192 -0.192 0.126 -0.126 0 0 

49.  0 0.178 -0.178 0.125 -0.125 -0.000193 0.000193 

50.  0 0.172 -0.172 0.125 -0.125 0.000215 -0.000215 

51.  0 0.216 -0.216 0.124 -0.124 2.32E-07 -2.32E-07 

52.  0 0.178 -0.178 0.123 -0.123 -2.55E-05 2.55E-05 

53.  0 0.17 -0.17 0.122 -0.122 -2.00E-08 2.00E-08 

54.  0 0.2 -0.2 0.117 -0.117 4.70E-08 -4.70E-08 

55.  0 0.214 -0.214 0.117 -0.117 -4.30E-08 4.30E-08 

56.  0 0.192 -0.192 0.116 -0.116 -6.00E-07 6.00E-07 

57.  0 0.2 -0.2 0.113 -0.113 4.70E-07 -4.70E-07 

58.  1 0.913 0.087 1.11 -0.11 1 0 

59.  1 0.91 0.09 1.11 -0.11 1 0 

60.  1 0.909 0.091 1.11 -0.11 0.993 0.007 

61.  1 0.91 0.09 1.1 -0.1 1 0 

62.  1 0.904 0.096 1.1 -0.1 1 0 

63.  1 0.911 0.089 1.09 -0.09 1 0 

64.  1 0.907 0.093 1.09 -0.09 1 0 

65.  1 0.912 0.088 1.06 -0.06 1 0 

66.  1 0.909 0.091 1.05 -0.05 1 0 

67.  1 0.91 0.09 1.04 -0.04 1 0 

68.  1 0.907 0.093 1.04 -0.04 1 0 

69.  1 0.911 0.089 1.03 -0.03 1 0 

70.  1 0.907 0.093 1.01 -0.01 1 0 

71.  1 0.928 0.072 0.995 0.005 1 0 

72.  1 0.909 0.091 0.99 0.01 1 0 

73.  1 0.916 0.084 0.989 0.011 1 0 

74.  1 0.904 0.096 0.983 0.017 1 0 

75.  1 0.916 0.084 0.979 0.021 1 0 

76.  1 0.912 0.088 0.965 0.035 1 0 

77.  1 0.909 0.091 0.963 0.037 1 0 

78.  1 0.909 0.091 0.959 0.041 1 0 

79.  1 0.917 0.083 0.956 0.044 1 0 

80.  1 0.905 0.095 0.956 0.044 1 0 

81.  1 0.913 0.087 0.955 0.045 1 0 

82.  1 0.901 0.099 0.954 0.046 1 0 

83.  1 0.907 0.093 0.951 0.049 1 0 

84.  1 0.909 0.091 0.918 0.082 1 0 

85.  1 0.909 0.091 0.915 0.085 1 0 

86.  1 0.909 0.091 0.903 0.097 1 0 

87.  1 0.909 0.091 0.903 0.097 1 0 

88.  1 0.909 0.091 0.896 0.104 1 0 

89.  1 0.909 0.091 0.89 0.11 1 0 

90.  1 0.907 0.093 0.884 0.116 1 0 

91.  1 0.925 0.075 0.883 0.117 1 0 

92.  1 0.914 0.086 0.882 0.118 0.925 0.075 

93.  1 0.912 0.088 0.881 0.119 1 0 

94.  1 0.905 0.095 0.88 0.12 0.856 0.144 

95.  1 0.915 0.085 0.878 0.122 1 0 

96.  1 0.2 0.8 0.872 0.128 1 0 

97.  1 0.918 0.082 0.87 0.13 1 0 

98.  1 0.921 0.079 0.864 0.136 1 0 

99.  1 0.918 0.082 0.859 0.141 1 0 

100.  1 0.921 0.079 0.85 0.15 1 0 
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