
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 1 (Jul. - Aug. 2013), PP 51-60
www.iosrjournals.org

www.iosrjournals.org 51 | Page

Achieving Privacy in Publishing Search logs

D.Srivalli
1
, P.Nikhila

2
, Ch. Jayachandra

3

1M.Tech (S.E), VCE, Hyderabad, India,
2M.Tech (S.E), VCE, Hyderabad, India,

2M.Tech (C.S.E), VCE, Hyderabad, India,

Abstract: - The “database of intentions,” collects by the search engine companies for the histories of their

users search queries. These searchlogs are a gold mine for researchers. The Search engine companies,

however, are wary of publishing search logs in order not to disclose sensitive information. In this paper, we are
analysing algorithms for publishing frequent queries, keywords and clicks of a search log. Our evaluation

includes the applications that use search logs for improving both search experience and search performance,

and our results show that the ZEALOUS’ output is sufficient for these applications while achieving strong

formal privacy guarantees. We are using two real applications from the information retrieval community: Index

caching, as the representative application for search performance, and for the query substitution, as a

representative application for search quality. For both applications, the sufficient statistics are histograms of

keywords, queries, or query pairs.

Keywords: - web search, information technology, database management, data storage and retrieval.

I. Introduction
 This work is part of a newly emerging rigorous study of data privacy, inspired by research in

cryptography, which acquired the name of private data analysis. This line of work presents precise mathematical

definitions of data privacy that give meaningful guarantees in the presence of a strong, realistic adversary. To

provide protocols satisfying the definitions, these works employ a technique called output perturbation,

according to which the results of data analysis. They are released after the addition to small amount of random

noise. Data privacy is a fundamental problem of the modern information infrastructure. Collections of personal

and sensitive data, previously the purview of governments and statistical agencies have become ubiquitous as

database systems have grown larger and cheaper. Increasing volumes of information are collected and archived

by health networks, financial organizations, search engines, intrusion detection systems; social networking

systems, retailers and other enter prizes. The potential social benefits from analyzing these databases are

enormous.
 The main challenge is to release aggregate information about the databases while protecting the privacy

of individual contributors. In contrast to statistical databases and randomized response methods, the records in

question contain actual, unperturbed data associated with individuals.

 Some of the attributes may be sensitive, e.g., health-related attributes in medical records. Therefore,

identifying attributes such as names and Social Security numbers are typically removed from micro data records

prior to release.

 The published records may still contain quasi-identifiers e.g., demo- graphic attributes such as ZIP

code, age, or sex. Even though the quasi-identifier attributes do not directly reveal a person's identity, they may

appear together with the identity in another public database, or it may be easy to reconstruct their values for any

given individual. Our paper concludes with an extensive experimental evaluation, where we compare the utility

of various algorithms that guarantee anonymity or privacy in search log publishing. Our evaluation includes
applications that use search logs for improving both search experience and search performance, and our results

show that ZEALOUS’ output is sufficient for these applications while achieving strong formal privacy

guarantees.

 We believe that the results of this research enable search engine companies to make their search log

available to researchers without disclosing their users’ sensitive information.

Search engine companies can apply our algorithm to generate statistics that are (Є, δ) probabilistic differentially

private while retaining good utility for the two applications we have tested. Beyond publishing search logs we

believe that our findings are of interest when publishing frequent item sets, as ZEALOUS protects privacy

against much stronger attackers than those considered in existing work on privacy-preserving publishing of

frequent items/ item sets.

Achieving Privacy in Publishing Search logs

www.iosrjournals.org 52 | Page

1.1Related Work:

1.1.1The Cost of Privacy:

 Re-identification is a major privacy threat to public datasets containing individual records. Many

privacy protection algorithms rely on generalization and suppression of quasi- Identifier attributes such as ZIP

code and birth date. Their objective is usually syntactic sanitization: for example, k- anonymity requires that

each quasi-identifier tuple appear in at least k records, while l diversity requires that the distribution of sensitive

attributes for each quasi-identifier have high entropy. The utility of sanitized data is also measured syntactically,
by the number of generalization steps applied or the number of records with the same quasi-identifier. We use

the same datasets from the UCI machine learning repository as were used in previous research on generalization

and suppression. Our results demonstrate that even modest privacy gains require almost complete destruction of

the data-mining utility. In most cases, trivial sanitization provides equivalent utility and better privacy than k-

anonymity, l diversity, and similar methods based on generalization and suppression.

1.1.2 Private Data Analysis:

 We introduce a new, generic framework for private data analysis. The goal of private data analysis is to

release aggregate information about a data set while protecting the privacy of the individuals whose information

the data set contains. Our framework allows one to release functions f of the data with instance-based additive

noise. That is, the noise magnitude is determined not only by the function we want to release, but also by the
database itself. One of the challenges is to ensure that the noise magnitude does not leak information about the

database. To our knowledge, this is the first formal analysis of the effect of instance-based noise in the context

of data privacy. Our framework raises many interesting algorithmic questions. Namely, to apply the framework

one must compute or approximate the smooth sensitivity of f on x. We show how to do this efficiently for

several different functions, including the median and the cost of the minimum spanning tree. We also give a

generic procedure based on sampling that allows one to release f(x) accurately on many databases x.

1.1.3 Set-valued data:

 Set-valued data, in which a set of values are associated with an individual, is common in databases

ranging from market basket data, to medical databases of patients’ symptoms and behaviors, to query engine

search logs. Anonymizing this data is important if we are to reconcile the conflicting demands arising from the

desire to release the data for study and the desire to protect the privacy of individuals represented in the data.
Unfortunately, the bulk of existing anonymization techniques, which were developed for scenarios in which

each individual is associated with only one sensitive value, are not well-suited for set-valued data. In this paper

we propose a top-down, partition-based approach to Anonymizing set-valued data that scales linearly with the

input size and scores well on an information-loss data quality metric. We further note that our technique can be

applied to anonymizing the infamous AOL query logs, and discuss the merits and challenges in Anonymizing

query logs using our approach.

1.1.4 Non-Interactive Database Privacy:

 We demonstrate that, ignoring computational constraints, it is possible to privately release synthetic

databases that are useful for large classes of queries – much larger in size than the database itself. Specifically,

we give a mechanism that privately releases synthetic data for a class of queries over a discrete domain with
error that grows as a function of the size of the smallest net approximately representing the answers to that class

of queries.

 We show that this in particular implies a mechanism for counting queries that gives error guarantees

that grow only with the VC-dimension of the class of queries, which itself grows only logarithmically with the

size of the query class.

 We also show that it is not possible to privately release even simple classes of queries (such as intervals

and their generalizations) over continuous domains. Despite this, we give a privacy-preserving polynomial time

algorithm that releases information useful for all half space queries, given a slight relaxation of the utility

guarantee. This algorithm does not release synthetic data, but instead another data structure capable of

representing an answer for each query. We also give an efficient algorithm for releasing synthetic data for the

class of interval queries and axis-aligned rectangles of constant dimension.
 Finally, inspired by learning theory, we introduce a new notion of data privacy, which we call

distribution al privacy, and show that it is strictly stronger than the prevailing privacy notion, differential

privacy.

Achieving Privacy in Publishing Search logs

www.iosrjournals.org 53 | Page

II. System Design and Architecture

2.1 Search Logs:

 A search log contains valuable information about the searches and corresponding actions performed by

users as they interact with a search engine. For example, a web search log collects queries and clicks of users
issued to an Internet search engine. Alternatively, a search log may contain queries issued by users and actions

performed on the displayed results (e.g., logs for enterprise search, mobile search, database search, product

catalog search/transactions, and so forth).A search log can be very useful for providing access to customer

services. For example, accessing a search log can help a company improve existing products and services (e.g.,

keyword advertising) and build new products and services.

 Moreover search logs are very valuable data sources that are currently not available to the research

community. For example, in many instances an Internet search log is more useful than a web crawl or document

repositories as the search log may be used to understand the behavior of users posing queries, and obtain

algorithms for problems such as computing related searches, making spelling corrections, expanding acronyms,

determining query distributions, query classification, and/or tracking the change of query popularity over time.

Advertisers can use such a log to better understand how users navigate to their web pages, gain a better

understanding of their competitors, and improve keyword advertising campaigns.
 However a search log contains a considerable amount of private information about individuals, and

thus a search company cannot simply release such data. Indeed, user searches provide an electronic trail of

confidential thoughts and identifiable information. For example, users may enter their own name or the names

of their friends, home address, and their medical history as well as of their family and friends. In the case of web

search logs, users may enter their credit card number and/or social security number as a search query, just to

find out what information is present on the web.

 There is shown general block diagram representing a search log a.1 being processed by a

transformation mechanism/algorithm a.2 into output data. As used herein, a “search log” includes any log that

records queries issued by users and actions (e.g. click or purchase) performed on the displayed results. For

example, one suitable search log may be a web search log in which each result is a URL and each action is a

click. Another suitable search log may comprise a product or service catalog search and transaction log, in
which each result is a product or service result, and each action is a purchase. The output data includes query

counts a.3 (e.g., comprising query, query count pairs), and two synapses A and B. The query counts represent an

approximate number of times that each query that is safe to publish (as described below) occurs in the log a.1.

 In this example, the output data also includes one synopsis A, in the form of a privacy-preserving

query-action graph a.4, comprising a graph over the set of queries and the set of results, where there is an edge

connecting a query to a result with weight equal to the number of actions on the result for the query. The query-

action graph may be based on the top results for each query, e.g., the graph may represent the approximate

query-result action counts for the top results for each query.

Fig1. Search Log Analysis

 Another synopsis B is in the form of a privacy-preserving query-reformulation graph a.5, comprising a

directed graph over the set of queries, where there is an edge from one query to another query with weight equal

to the number of times the first query is reformulated to the second query. The query-reformulation graph may

be based on the top reformulations (related/suggested queries that are returned) for each query that are clicked,

Achieving Privacy in Publishing Search logs

www.iosrjournals.org 54 | Page

that is, the graph may represent the query-result reformulation counts for the top related queries returned with

the response for each query.

 Another synopsis C is in the form of a privacy-preserving query-inaction graph a.6. As described

below, this reflects for queries and URLs the number of times that a URL was provided in response to a query

but no action was taken, e.g., the URL was not clicked, that is, was skipped. Note that in general, any set of d

queries of the user can be retained, such as a random selection or pattern that limits the number to d; further, a

limit may not be mandatory. Thus, further processing may take place on the search log itself, or on a subset of
the queries for processing, e.g., on the block b.1.

 Then, for every query q that remains in D, represented in FIG. 1 by the block b.1, starting with a first

query at the occurrence count is obtained, that is, let M (q, D) denote the number of occurrences of q in D. The

query q is evaluated against the threshold frequency count K, and released (to an output set b.2 if and only if the

count plus the noise exceeds the threshold frequency count K. In other words, information about any query is

published if and only if M(q, D)+Lap(b1)≧K. Note that for any or all noise values, the noise value may be

positive, or may be negative such that when added, the noisy count decreases relative to the count value before

adding; the noise also may be zero.

III. Analyzing Modules
3.1 Search Engine Formation:

 Creating a search engine which scales even to today's web presents many challenges. Fast crawling

technology is needed to gather the web documents and keep them up to date. Storage space must be used

efficiently to store indices and, optionally, the documents themselves. The indexing system must process

hundreds of gigabytes of data efficiently. Queries must be handled quickly, at a rate of hundreds to thousands

per second.

 Search engines play a crucial role in the navigation through the vastness of the web. Today’s search

engines do not just collect and index WebPages, they also collect and mine information about their users. They

store the queries, clicks, IP-addresses, and other information about the inter actions with users in what is called a

search log.

Fig2: google home page

3.2 Category of Formation:

 To assure user acceptance, the category formation process must be efficient with respect to both
category quality and response time. That AISEARCH is able to fulfil these performance requirements, which

gives a snapshot of our comprehensive analysis based on document collections that were categorized by human

editors. The performance requirements are also reflected in the implemented software technology: To compare

different clustering’s of search results, AISEARCH employs strategy patterns to make term weighting schemes,

similarity measures, clustering algorithms, and cluster validity measures interchangeable at runtime. For

efficient text handling, the symbol processing algorithms for text parsing, text compression and text comparison

utilize specialized flyweight patterns.

Achieving Privacy in Publishing Search logs

www.iosrjournals.org 55 | Page

Fig3: search for java

3.3 Log generation:
 When a user submits a query and clicks on one or more results, a new entry is added to the search log.

It is also called search history. This will helpful to find the users behaviour without loss of generality, traditional

search log information are user-id, query, time and user clicks. Where a USER-ID identifies a user, a QUERY is

a set of keywords, and CLICKS is a list of urls that the user clicked on. The user-id can be determined in various

ways;

 For example, through cookies, IP addresses, or user accounts. The search logs updated every time when

user submits and browse a page.

Fig4: download java

3.4 Query clustering:

 Query clustering is a process used to discover frequently asked questions or most popular topics on a

search engine. This process is crucial for search engines based on question-answering. A query may be a well-

formed natural language question, or one or more keywords or phrases. Once a user query is input, a list of
documents is presented to the user, together with the document titles. Because the document titles in Encarta are

carefully chosen, they give the user a good idea of their contents. Therefore, if a user clicks on a document, it is

likely that the document is relevant to the query, or at least related to it. After applying classification in search

logs the clusters will be formed. Clusters are similar search things.

Achieving Privacy in Publishing Search logs

www.iosrjournals.org 56 | Page

Fig5: search for java local host

3.5 Keyword Checking:

 The keywords formed by different users are different and holds user’s uniqueness. The infrequent
keyword is compared with the frequent keyword to find there is any sub keyword. If any such sub keyword is

found in the infrequent keyword, then the keyword is qualified. Consider the keyword “lecture notes about

search logs” is the frequent keyword as discovered by the Zealous algorithm.

The keyword “about search logs” is an infrequent keyword. But it is a sub keyword of the frequent item. If such

infrequent item exists then those keywords are qualified to be published. This may improve the addition of

useful entries in the log.

IV. Url Clicks
4.1 URL shortening:
 The URL (Uniform Resource Locator) reveals the location of a resource in the web environment.

Normally an URL contains the fields like protocol, authority, filename, host, path, port. The complete URL of

an user click is likely to reveal the user’s identity and hence the attributes like filename, path are removed. This

procedure would conceal the exact visit of the user.

4.2 Multiple visits to same URL:

 A user obtains several search results for the keyword provided for searching. The user chooses the link

appropriate to his search intension. The several links chosen by the user may point to the same URL. This

reveals that the user finds the information in that page which satisfies their need. Consider the keyword, exam

results in the log. The URL clicked by the user from the search results are,

http://www.results.in/colleges/BEresults.html

http://www.results.in/colleges/MCAres.html
http://www.results.in/colleges/MEresutlts.html

http://www.results.in/colloges/MBAres.html

 The above clicks of the user reveal that he finds the intended content on the web page

http://www.chennairesults.in.The mentioned URL of the page is then qualified and is included in the published

log.

4.3 The URL with the keyword:

 The user searches by the keyword and obtains search results. Probably the URL chosen by the user may

contain the keyword as its sub term. This denotes that it was a relevant click by the user. Such URLs can be

included in the published log.
 Consider the keyword, exam results is in the search log. The URL clicked by the user is

http://www.examinfo.in then this URL is added in the published log. The URL containing the keywords which

is chosen by the user, i.e. the entry in the log, showcase that the web page is of common interest. This highly

depends on the user’s way of providing the keyword and following the links in the result.

Achieving Privacy in Publishing Search logs

www.iosrjournals.org 57 | Page

V. Providing Privacy
 For providing privacy our proposed approach introduces a search log publishing algorithm called

ZEALOUS. ZEALOUS ensures probabilistic differential privacy and it follows a simple two-phase framework.

 In the first phase, ZEALOUS generates a histogram of items in the input search log, and then removes
from the histogram the items with frequencies below a threshold. In the second phase, ZEALOUS adds noise to

the histogram counts, and eliminates the items whose noisy frequencies are smaller than another threshold. Our

proposed approach provides privacy to infrequent keywords and queries.

5.1 Algorithm:

 The Zealous algorithm uses a two phase framework to discover the frequent items in the log and finally

publishes it. To discover the frequent items, the Zealous algorithm uses two threshold values. The first threshold

value is set based on the number of user contributions in the log. By this method of finding the frequent items,

the result log achieves probabilistic differential privacy.

5.2 Algorithm ZEALOUS for Publishing Frequent Items of a Search Log:

Input: Search log S, positive numbers m,λ,T
1. For each user u select a set s u of up to m distinct items from u’s search history in S.3

2. Based on the selected items, create a histogram consisting of pairs (k,ck) where k denotes an item and ck

denotes the number of users u that have k in their search history su. We call this histogram the original

histogram.

3. Delete from the histogram the pairs (k,ck) with count ck smaller than T

4. For each pair (k,ck) in the histogram, sample a random number ήk from the Laplace distribution Lap (λ) 4

and add ήk to the count ck, resulting in a noisy count: ck ←ck+ ήk.

5. Delete from the histogram the pairs k,ck) with noisy counts ck ≤ T’

6. Publish the remaining items and their noisy counts.

 To understand the purpose of the various steps one has to keep in mind the privacy guarantee we would
like to achieve. Steps 1, 2, and 4 of the algorithm are fairly standard. It is known that adding Laplacian noise to

histogram counts achieves Є differential privacy. However, the previous section explained that these steps alone

result in poor utility because for large domains many infrequent items will have high noisy counts. To deal

better with large domains, we restrict the histogram to items with counts at least T in Step 2. This restriction

leaks information and thus the output after Step 4 is not Є differentially private. One can show that it is not even

(Є,δ) probabilistic differentially private (for δ < 1=2). Step 5 disguises the information leaked in Step 3 in order

to achieve probabilistic differential privacy. In what follows, we will investigate the theoretical performance of

ZEALOUS in terms of both privacy and utility. Sections 4.1 and 4.2 discuss the privacy guarantees of

ZEALOUS with respect to (Є,δ) indistinguishability and (Є,δ) probabilistic differential privacy, respectively.

 Section 4.3 presents a quantitative analysis of the privacy protection offered by ZEALOUS. Sections

4.4 and 4.5 analyze the utility guarantees of ZEALOUS.The main objective of Zealous algorithm is to figure out

the frequent items in the log. The Zealous algorithm is applied to a sample search log collected from a local
search engine to the items in the log like keywords and URL values. The log contained more than 200 entries

with 58 users. The Zealous algorithm was applied to the log with the threshold values in the table.

Table 1: Keyword log of Zealous
Keyword count

Sport stores 2009 31

Opera browser in mobiles 42

Laptop Models 53

Antivirus software for windows 45

New theme music 63

Exam results 28

Projects 32

 The above are the keywords which have passed the filtration of the two phase framework. These

keywords are identified as frequent keywords. Similarly it identifies the frequent URL clicks in the log by the

two threshold values.

Achieving Privacy in Publishing Search logs

www.iosrjournals.org 58 | Page

Table 2: URL log of Zealous
URL clicks count

http://esupport.trendmicro.com 17

http://blogs.oracle.com 21

http://en.wikipedia.org 24

http://www.entrance-exam.net 19

https://www.mcafeeasap.com 22

http://technet.microsoft.com 25

http://www.whatis.com 39

 However, Zealous algorithm leaves out the infrequent keywords in the log. However setting upon the

threshold value is a challenging task. But in a search log, there will be several infrequent items. The infrequent

item which has no possibility of revealing an user’s identity has to be identified and it has to be published.

Hence confess is proposed to qualify such infrequent items in the log.

Table 3: Keyword log of Confess
Keyword count

Sport stores 2009 31

Opera browser in mobiles 42

Laptop mobiles 53

Antivirus software for windows 45

New theme music 63

Exam Results 28

Projects 32

Milk Choclates 33

Laptop Models 33

Choclates 12

Antivirus Software 4

Antivirus Software 20

Results 1

Theme Music 7

Sports 2

 The above is the keyword log produced as the result of applying confess algorithm of finding the

infrequent items. It can be noted that the keywords which are qualified is the part of the frequent keyword.

Releasing such keyword, would improve the utility as the log will contain more entries when published.

Table 4: URL log of Confess
URL Clicks Count

http://esupport.trendmicro.com 17

https://blogs.oracle.com 21

http://en.sportsstore.org 24

http://www.entrance-exam.net 19

https://www.mcafeeasap.com 22

http://technet.microsoft.com 25

http://whatis.com 39

https://docstoc.com 11

http://blogs.project.com 7

http://en.mcs-college.org 3

http://www.exam.net 4

https://www.webmasterworld.com 1

http://technet.puzzles.com 2

http://www.musics.net 6

 The performance of the confess algorithm is analyzed through various parameters like response time,

average number of items published in the log. Then the proposed confess algorithm is compared with the

zealous algorithm to swot up the performance in terms of utility produced by the log. The below statistics show

the average number of keywords published in the zealous log and the confess log. The average number of

keyword Nk) is the ratio of the number of items released in the log to the total number of items in the original

log. To perform this study various experimental search logs are considered.

Achieving Privacy in Publishing Search logs

www.iosrjournals.org 59 | Page

Table 5: Average number of keywords
Trails Zealous log-Nk Confess log-Nk

1 0.03 0.192

2 0.32 0.130

3 0.02 0.07

4 0.189 0.193

5 0.321 0.381

 We first give an overview of how our top-down Partition algorithm performs compared with the

bottom-up a algorithm from with three datasets. We then drill down to the dataset BMS-WebView-2, varying

different parameters to see how performance changes for these two approaches.

5.3 Clustering Based On Score Frequency Histogram:
 Score frequency histogram method is a process that makes statistical analysis of the total scores of land

evaluation units, divides the score range into several tiny ones, draws frequency histogram through frequency

statistics towards the total score of every land evaluation unit in each percentile range, and finally, delimits the

land level boundary according to total score frequency distribution. The method to draw cloud histogram

according to cloud fuzzy frequency is as follows. Make the x-coordinate represent the total scores of appraisal

units and Y-coordinate cloud fuzzy frequency. Sign the endpoint of each clear-defined interval on the x-
coordinate.

Fig 6. Keyword Counts

 Then draw rectangles with the distance d of each interval as the bottom and the cloud fuzzy frequency

as the height, and we finally get the cloud histogram. We see that the power-law shape of the distribution is well

preserved. However, the total frequencies are lower for the sanitized search logs than the frequencies in the

original histogram because the algorithms filter out a large number of items. We also see the cutoffs created by

k. We observe that as the domain increases from keywords to clicks and query pairs, the number of items that

are not frequent in the original search log increases. For example, the number of clicks with count equal to one

is an order of magnitude larger than the number of keywords (Fig 2, 3) with count equal to one.

Fig 7. Query Counts

 We mentioned the applicability of set-valued anonymization techniques to privacy preserving query log

publishing. In this section we discuss query log anonymization as an extended application of our top-down

partition-based anonymization, and present preliminary experimental results obtained from anonymizing the
infamous AOL query logs using our technique.

Achieving Privacy in Publishing Search logs

www.iosrjournals.org 60 | Page

5.4 Test Case:
Test Case Check field Objective Expected Result

TC-001 Client Not open the

application

Should check software

installation

TC-002 Client Search any data High priority doc will come first

TC-003 Server Read all doc in

trends and display

So,visible that doc,with

username

TC -004 Server Not calculating

histogram

Should calculate histogram and

combine the features

TC-005 Server Check any data Now should display all docs,so

give privacy to user

VI. Conclusion
 In this paper proposed work is to collect in frequent and in frequent search histories .we are using

zealous algorithm and histogram counting operations finally to generate log files and counting operations. A

topic of future work is the development of algorithms to release useful information about infrequent queries,

keywords and clicks in a search log while preserving user privacy

References
[1] N. R. Adam and J. C. Wortmann, “Security-control methods for statistical databases: a comparative study”, ACM Computing

Surveys, 25(4), 1989.

[2] N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent information: ranking and clustering”, In STOC 2005, 684–693.

[3] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “ Practical privacy: The SuLQ framework”, In PODS, 2005.

[4] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee, “Toward privacy in public databases. In Theory of Cryptography

Conference (TCC)”,2005, 363–385.

[5] S. Chawla, C. Dwork, F. McSherry, and K. Talwar. “On the utility of privacy-preserving histograms”, In 21st Conference on

Uncertainty in Artificial Intelligence (UAI), 2005.

[6] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. “Tools for privacy preserving data mining. SIGKDD

Exploration”,4(2),2002,28–34.

[7] I. Dinur and K. Nissim, “Revealing information while preserving privacy”, In PODS, 2003,202–210.

[8] C. Dwork. “Differential privacy”, In ICALP, 2006,1–12.

[9] B.-C. Chen, K. LeFevre, and R. Ramakrishnan,“Privacy skyline: privacy with multidimensional adversarial knowledge”, In VLDB,

2007.

[10] V.Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-anonymity, “Secure Data Management in Decentralized

Systems”, 2007.

[11] A. Ev_mievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy-preserving data mining. In PODS, 2003.

[12] B. Fung, K. Wang, and P. Yu. “Top-down specialization for information and privacy preservation”, In ICDE, 2005.

[13] R. Jones, B. Rey, O. Madani, and W. Greiner, “Generating Query Substitutions,” Proc. 15th Int’l Conf. World Wide Web (WWW),

2006.

[14] S. Prasad Kasiviswanathan, H.K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith, “What Can We Learn Privately?”, Proc. 49
th

Ann. IEEE Symp. Foundation of Computer Science (FOCS), 2008,531- 540.

[15] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas, “Releasing Search Queries and Clicks Privately”, Proc. 18th Int’l Conf.

World Wide Web (WWW), 2009.

