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Abstract: In the present study, we have investigated inflationary cosmological model with flat potential and 

bulk viscosity taking Bianchi Type VI0 space-time as a source. To get the deterministic model of universe, we 

have also assumed that shear () is proportional to expansion ()(Thorne [31]) and  = constant as 

considered by Zimdahal [29] where  is the coefficient of bulk viscosity. We find that the observations of 

inflationary cosmology i.e. slow role parameters (,), third slow parameter (S) and anisotropic parameter (Ãm) 

are in excellent agreement with the Planck (2013) results [39]. We also find that spatial volume increases 

exponentially representing inflationary scenario of the universe. The model in general represents anisotropic 

space time but isotropizes when n = 1. The model also represents accelerating and decelerating phases of 

universe which matches with latest observations of universe. The rate of Higgs field is initially large but 

decreases with time and vanishes for large value of time. The model has Point Type singularity at T = 0 

(MacCallum [30]). 
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I. Introduction 

The present day universe is satisfactorily described by homogeneous and isotropic models given by 

FRW (Friedmann-Robertson-Walker) line-elements. The universe in smaller scale is neither homogeneous nor 

isotropic nor do we expect the universe to have these properties in its early stages. Patridge and Wilkinson [1] 

have pointed out that FRW models are unstable near the singularity. Also in the late eighties, Astronomical 

observations revealed that the predictions of FRW models do not always meet our requirements as was believed 

earlier (Smoot et al. [2]). Therefore, spatially homogeneous and anisotropic Bianchi models (I-IX) are 

undertaken to study the universe in its early stages of evolution. Among these, Bianchi Type I space time is the 

simplest one and is anisotropic generalization of zero curvature of FRW models. Bianchi Type VI0 space-times 

are of particular interest because these are simple generalization of Bianchi Type I space-time. Barrow [3] in his 

investigation has pointed out that Bianchi Type VI0 universes give a better explanation of some of the 

cosmological problems like primordial helium abundance and these can be isotropized in special case. Seeing 

the importance of these models, various authors viz. Ellis and MacCallum [4], Collins [5], Dunn and Tupper [6], 

Roy and Singh [7], Tikekar and Patel [8], Bali et al. [9], Ram and Singh [10] have studied Bianchi Type VI0 

cosmological models in different contexts. The introduction of viscosity in the cosmic fluid content, has been 

found very useful in explaining many significant physical aspects of the dynamics of homogeneous 

cosmological models as per investigations by many authors viz. Ribeiro and Sanyal [11], Patel and Koppar [12], 

Bali et al. [13,14], Verma and Shri Ram [15] in Bianchi Type VI0 models for viscous fluid distribution in 

different contexts. 

The primordial acceleration in which the universe undergoes rapid exponential expansion is known as 

inflation. There is a great interest in the inflationary universe scenario since this scenario solves different 

problems of modern cosmology like homogeneity, the isotropy, flatness of observed universe and primordial 

monopole problems. Guth [16] suggested that rapid expansion is due to false vacuum energy and after inflation, 

the universe is filled with bubbles. This inflationary scenario is also confirmed by CMB (Cosmic Microwave 

Background) observations. Historically a model closely related to the inflationary universe was first suggested 

by Starobinsky [17] but the inflationary cosmological models became popular after an important paper of Guth 

[16]. The most prevailing inflationary models are investigated through the scalar field which acts as a source of 

inflation and generates cosmic acceleration (Sato [18], Linde [19]). It  also explains the distribution of large 

scale structure and origin of observed anisotropy of CMB radiation in the inflationary era (Gold et al. [20]). 

Inflationary scenario for homogeneous and isotropic models (FRW models) has been studied by many authors 

viz. Linde [21], Wald [22], Barrow [23], La and Steinhardt [24], Rothman & Ellis [25] have pointed out that we 

can have solution for isotropic problem if we work with anisotropic space-time that isotropizes in special case. 

Keeping in view of these observations Bali and Jain [26], Bali [27] investigated inflationary scenario in LRS 

Bianchi Type I and Bianchi Type I space-time respectively. 
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II. Metric and Field Equations 
We consider Bianchi Type VI0 metric in the form 

2x2222x22222 dzeCdyeBdxAdtds      (1) 

where A,B,C are metric potentials and functions of t-alone. 

We assume the co-ordinates to be comoving so that 

 .1v,vv0v 4321   

The Lagrangian is that of gravity minimally coupled to a scalar field () with effective potential V(), we have 

(as given by Stein-Schabes [28]) 
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The Einstein Field equations (in gravitational units G = c = 1) in case of massless scalar field  with potential 
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The Einstein’s field equations (3) for the metric (1) leads to 
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III. Solution of Field Equations 

We have assumed flat region to get inflationary scenario. Thus V() = constant = K and  =  as considered by 

Zimdahl [29]. 

The isotropization of the cosmic fluid induced by viscosity is an important physical effect as discussed by 

Brevik and Peterson [35,36]. Bamba et al. [37] have investigated that bulk viscous fluid model can explain the 

recent Planck results of the observations for inflationary universe. We use the ansatz  = constant because it 

has significant role to connect with occurrence of Little Rip (LR) cosmology using FRW models as given by 

Brevik et al. [38]. 

Equation (10) leads to 

 B = mC         (11) 

where m is constant of integration. 

The equation (5) for the scalar field () leads to  
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where suffix ‘4’ indicates ordinary partial derivatives with respect to t. Using the condition of flat region i.e. 

V() = K (constant) in equation (12), we have 
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From equation (13), we have 

 
24 AB
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where ℓ is constant of integration. 

The scale factor R for line-element (1) is given by 
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To get the deterministic solution in terms of cosmic time t, we assume that shear () is proportional to 

expansion () as considered by Thorne [31]. Thus, we have 

 A = B
n
         (16) 

where A and B are metric potentials, n is a constant and 
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The motive for assuming the condition    is explained as: Referring to Thorne [31], the observations of the 

velocity – redshift relation for extra galactic sources suggest that the Hubble expansion of the universe is 

isotropic within 30 percent (Kantowski and Sachs [32], Kristian and Sachs [33]). More precisely, the red shift 

studies place the limit 300
H




 where  is shear and H the Hubble constant. Also Collins et al. [34] have 

pointed out that for spatially homogeneous metric, the normal congruence to the homogeneous hypersurface 

satisfies the condition 



 = constant. 

Equations (6) and (9) after using (10) lead to  
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Using equation (16), we have 
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To find the solution of equation (18), we assume that 
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From equation (19), we have 
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where   is constant of integration. Equation (20) leads to 
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Thus, we have 
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where T.t   

After suitable transformation of coordinates, the metric (1) leads to the form 
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IV. Physical and Geometrical Aspects 

The rate of Higgs fields () is given by equation (14) as  
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which leads to 
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where N is constant of integration. 

The spatial volume (R
3
) for the model (26) is given by 
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Spatial volume increases exponentially, hence represents inflationary universe. 
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q < 0 leads to tanh
2
T > 2/3 and q > 0 leads to tanh

2
T < 2/3 

Thus the model (26) represents accelerating and decelerating phases of universe. 
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V. Inflationary Parameters 
We calculate the inflationary parameters i.e. slow role parameters (,), third slow parameter (S) and 

anisotropic parameter (
m

A


) for the model (26) to examine whether these parameters are in excellent 

agreement with the Planck (2013) results [39] for canonical scalar field. 

 The scalar factor (R) for the model (26) to the first approximation is given by 
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The slow roll parameters  and  is defined by Unnikrishnan and Sahni [40] as  
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Thus slow role PLI (Power Law Inflation) corresponds to  < < 1 which occurs when  > > 1.  

 We also discuss a new Power Law Inflation model in which inflation is driven by canonical scalar field 

with the Lagrangian 

  V( XX)L(         (42) 
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where  is scalar field. For a generic L(,X), it is convenient to introduce a third role parameter S as given by 

Hu [41] 
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where CS is the speed of sound of the scalar field as given by Garriga & Mukhanov [42] 
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Thus S = 0 flow roll inflation requires not only  < < 1 and |  | < < 1 but also        | S | < < 1. For a canonical 

scalar field, the value of S is identically zero and this is also the case for kinematically driven as well as the non-

canonical model (Unnikrishnan et al. [43]) 

If A
 

is an anisotropy parameter and H1, H2, H3 are Hubble parameters in x, y, z directions then anisotropy 

parameter A
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 is defined as 
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VI. Discussion and Conclusion 
We find that spatial volume increases exponentially representing inflationary scenario of the universe. 

The model in general represents anisotropic space time but isotropizes when n = 1. The model also represents 

accelerating and decelerating phases of universe which matches with the recent astronomical observation 

because the deceleration parameter q < 0 and q > 0 respectively. The rate of Higgs field is initially too large but 

decreases with time and vanishes for large values of T. The model (26) has Point Type singularity at T = 0 

(MacCallum [30]). The rate of Higgs field evolves slowly but the universe expands. The Hubble parameter is 

initially large but leads to finite quantity for large values of time. At the time of evolution of universe, the 

anisotropy is constant and during the inflation, it is still homogeneous and anisotropic but isotropizes in special 

case. We find that the observations of inflationary cosmology i.e. slow role parameters (,), third slow 

parameter (S) and anisotropic parameter (Ãm) are in excellent agreement with the Planck (2013) results [39]. 

The results obtained in the manuscript matches with the result of cosmic no-hair theorem that any anisotropic 

metric is diluted and leads to de-sitter space time asymptotically. 
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