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Abstract: Corrections in energy levels of hydrogen and muonic hydrogen atom are calculated using Uehling 

potential with point and finite size proton. The finite size protonis used by introducing the charge density of the 

proton. The derivative expansion theory is used to obtain approximate finite size potentials by taking two forms 

of the proton charge densities (Gaussian and the exponential). The three potentials (point charge and 

approximated Gaussian and exponential potentials) give approximately the same results. These calculations are 

performed with Schrödinger and Dirac coulomb wave functions using perturbation theory. For point proton 

there is a very small difference (in the second decimal) in the Lamb shiftbetween the results calculated 

bySchrödinger wave functions and those with Diracwave functions. The finite size of proton gives values of 

Lamb shifthigher than that of point charge. The fine structure correction is very small compared to the Lamb 

shift values. 

Key words: Uehling potential – Point proton – Finite size proton – Hydrogen atom – Muonic hydrogen atom – 

Energy levels corrections – Lamb shift. 

 

I. Introduction 
 The electronic vacuum polarization effects and in particular the Uehling potential plays an important 

role in the calculations of the energy levels and wave functions in muonic atoms. It is responsible for 

thedominantquantum electrodynamics (QED) effects in atoms with heavy orbiting particle (such as muon [1]). 

The Uehling potential is able to calculate relativistic corrections for a variety of levels in atoms [2]. One of the 

important effects is the finite nuclear size. This effect depends on nuclear charge 𝑍𝑒 and principle and orbital 

quantum numbers, 𝑛 and 𝑙, respectively. The low 𝑙 states and mostly, the 1𝑠 and 2𝑠 states are sensitive to the 

finite nuclear size effects. They have been used to determine the charge radius of nuclei starting fromhydrogen 

[3] to Uranium [4]. In this paper we calculated the Uehling corrections in the energy levels (1𝑠, 2𝑠, 3𝑠,4𝑠, 2𝑝, 

3𝑝 and 3𝑑) of hydrogen and muonic hydrogen atom for the pointand finite size proton using Schrodinger wave 

functions. The Lamb shift(∆𝐸2𝑝 − ∆𝐸2𝑠)is calculated in case of nonrelativistic [5] and relativistic wave 

functions [6] usingboth point and finite size proton by applying perturbation theory. 

 

II. One photon exchange Uehling Potential 
 A simple example of the effective Lagrangian formalism and the validity of the derivative expansion 

(DE) we consider the vacuum polarization process in QED. Abundant evidence exists which supports the idea 

that QED is the fundamental theory of electromagnetic interactions below 100 GeV. As well, it is usually 

considered to be the most well understood physical field theory. The simplest form is that of a theory of spin-1/2 

charged fermions with field𝜓 and mass𝑚, and charge 𝑒, withinteractions mediated by the spin-1 massless gauge 

field for photons, 𝐴𝜇 . The QED Lagrangian in the Feynman gauge is  

ℒ𝑄𝐸𝐷 = 𝜓  𝛾𝜇  𝑖𝜕𝜇 − 𝑒𝐴𝜇  − 𝑀 𝜓 −
1

4
𝐹𝜇𝜈 𝐹𝜇𝜈 −

1

2
 𝜕𝜇 𝐴𝜇  

2
+ 𝛿ℒ                                        (1) 

𝐹𝜇𝜈 = 𝜕𝜇 𝐴𝜇 − 𝜕𝜈𝐴𝜈  

 One treatsthis case perturbatively about the free particle solution. For this setting, we will clearly be 

able to see the effect of the shape of the source density in a calculation that has the same flavor as theDE 

approximation. The analysis is simplified by treating the interaction as a perturbation in the coupling and 

comparing quantities only to𝒪 𝛼 ,where 𝛼 = 𝑒2 4𝜋  is the usual fine structure constant. This is accomplished 

by considering the modification of the free photon propagator by the 𝒪 𝛼  vacuum polarization insertion. In 

momentum-space, the propagator 𝑖𝐷𝛼𝛽  𝑞  modified by  

𝑖𝐷𝛼𝛽  𝑞 = 𝑖𝐷0𝛼𝛽  𝑞 + 𝑖𝐷0𝛼𝜇  𝑞 𝑖Π𝜇𝜈  𝑞 𝑖𝐷0𝜈𝛽  𝑞                                                    (2) 

Note that from gauge invariance𝑞𝜇 Π𝜇𝜈  𝑞 = 0, which dictates the Lorentz invariant form 

Π𝜇𝜈 =  𝑔𝜇𝜈 −
𝑞𝜇 𝑞𝜈

𝑞2  Π 𝑞2                                                                          (3) 

So that 
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𝑖𝐷𝛼𝛽  𝑞 = −
𝑖𝑔𝛼𝛽

𝑞2 + 𝑖𝜖
−

𝑖𝑔𝛼𝛽

 𝑞2 + 𝑖𝜖 2
Π 𝑞2                                                                  (4) 

 From the Feynman rules of QED with the usual charge renormalization, the propagator polarization 

insertion is found to be [7] 

Π 𝑞2 =
2𝛼

𝜋
𝑞2  𝑑𝑧

1

0

𝑧 1 − 𝑧 ln  1 − 𝑧 1 − 𝑧 
𝑞2

𝑀2
                                                  (5) 

This integral can be evaluated, and for the case of a stationary source, the momentum is space-like,  

𝑞2 = −𝑞 2, and 

Π 𝑞2 = −
𝛼𝑞 2

3𝜋

 

 −
5

3
+

4𝑀2

𝑞 2
+  1 −

2𝑀2

𝑞 2
  1 +

4𝑀2

𝑞 2
ln

 

 
 1 +

4𝑀2

𝑞  2 + 1

 1 +
4𝑀2

𝑞  2 − 1
 

 

 

                       (6) 

 To obtain an expression for the potential we fold the background spherically symmetric charge density 

source, 𝜌𝑐𝑕(𝑟), over the new part of the propagator. For a time independent source 

𝑉𝑣𝑎𝑐
𝐸 =  

𝑑3𝑞

 2𝜋 3
𝑒𝑖𝑞  ∙𝑥 

∞

0

Π𝑅 −𝑞2 

 𝑞 4
𝜌𝑐𝑕 𝑞                                                                 (7) 

The angular part is integrated, leaving 

𝑉𝑣𝑎𝑐
𝐸 =

2𝛼

𝜋
 𝑑𝑞

∞

0

sin 𝑞𝑟 

𝑞𝑟

Π𝑅 −𝑞2 

𝑞2
𝜌𝑐𝑕 𝑞                                                             (8) 

Where 

𝜌𝑐𝑕 𝑞 =  𝑑3𝑥𝑒𝑖𝑞  ∙𝑥 

∞

0

𝜌𝑐𝑕 𝑥 = 4𝜋  𝑑𝑟𝑟2

∞

0

sin 𝑞𝑟 

𝑞𝑟
𝜌𝑐𝑕 𝑟                                              (9) 

This expression gives the exact effect of the vacuum polarization in theDE theory (to𝒪 𝛼2 ). Since the DE 
coefficients has the form 

𝑍1 = −  𝜕Π𝑠 𝑞
2 

𝜕 𝑞2 
 
𝑞2=0

𝑍2 = −
1

2
 𝜕

2Π𝑠 𝑞
2 

𝜕 𝑞2 2  
𝑞2=0

                                                (10) 

And 

Π𝑠 𝑞
2 ≅ −

𝛼

15𝜋𝑀2
𝑞4                                                                              (11) 

One can evaluate these coefficientsusing equation (10) and (11), giving 

𝑍1 = 0,         𝑍2 =   
𝛼

15𝜋𝑀2
                                                                         (12)  

 The result 𝑍1 = 0 is a manifestation of charge conversation, which implies that corrections to the 

charge density are total derivatives that vanish under a spatial integration. This allows us to write an effective 

Lagrangian for low energy photons that takes into account the vacuum polarization loop in an additional 

derivative term. The full effective one-loop Lagrangian will contain contributions for the photon-electron vertex 

correction that are of the order 𝛼2. It is reffered to as the Euler and Heisenberg Effective Lagrangian [8]. Here 

we are interested in the order 𝛼 part (only the vacuum polarization) 

ℒ𝑒𝑓𝑓 = −
1

4
𝐹𝜇𝜈 𝐹𝜇𝜈 −

𝛼

30𝜋𝑀2
𝜕𝜇 𝐹𝜇𝜆 𝜕𝜈𝐹𝜈𝜆 − 𝑗𝜇 𝐴𝜇                                                     (13) 

 The fermion part of the Lagrangian is dropped here, and an external source current 𝑗𝜇  is included. The 

gauge fixing term can be droppedbecause we will restrict ourselves to the time like part of the vector potential in 

the case where it is independent of time. The suitable form for the Euler-Lagrange equation is 

𝜕ℒ

𝜕𝐴𝜇
− 𝜕𝜆  

𝜕ℒ

𝜕 𝜕𝜆𝐴𝜇  
 + 𝜕2  

𝜕ℒ

𝜕 𝜕2𝐴𝜇  
 = 0                                                        (14) 

 Considering the time-like part of the potential 𝐴0and a source current𝑗𝜇 = 𝛿𝜇0𝑗0, we obtain a modified 

form of Maxwell’s equation 

𝜕2𝐴0 = 𝑗0 +
𝛼

15𝜋𝑀2
𝜕4𝐴0 ,                                                                         (15) 

Which for a time independent potential becomes 

∇2𝐴0 = −𝑗0 −
𝛼

15𝜋𝑀2
∇4𝐴0                                                                       (16) 

Making use of the identity ∇2 1  𝑥   = −4𝜋𝛿 𝑥   this may be written as an integrodifferential equation: 
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𝐴0 𝑥  =
1

4𝜋
 𝑑3𝑥′

1

 𝑥 ′ − 𝑥  
 𝑗0 𝑥 ′ +

𝛼

15𝜋𝑀2
∇4𝐴0 𝑥 ′   

                                                        =
1

4𝜋
 𝑑3𝑥′

1

 𝑥 ′ − 𝑥  
𝑗0 𝑥 ′ +

𝛼

60𝜋𝑀2
 𝑑3𝑥′ ∇2

1

 𝑥 ′ − 𝑥  0

 ∇2𝐴0 𝑥 ′  

                                                        =
1

4𝜋
 𝑑3𝑥′

1

 𝑥 ′ − 𝑥  
𝑗0 𝑥 ′ −

𝛼

15𝜋𝑀2
∇2𝐴0 𝑥                                                        (17) 

 As the electromagnetic coupling 𝛼 is small, we can solve this equation iteratively by substituting for 

the RHS 𝐴0 with the LHS𝐴0 in an iterative manner. For example, with a point-like source withcharge −𝑍𝑒 we 

have 𝑗0 𝑥  = −𝑍𝑒𝛿  3  𝑥   , so 

𝐴0 𝑥  = −
𝑍𝑒2

4𝜋 𝑥  
−

𝛼

15𝜋𝑀2
∇2𝐴0 𝑥   

                                                                                 = −
𝑍𝛼

 𝑥  
− 𝛼𝑍𝛼

4𝛿 3  𝑥  

15𝑀2
                                                                     (18) 

 This is the familiar term, which contributes to the Lamb shift in hydrogen [9]. To understand how 

useful the effective Lagrangian is, here we consider the spherically symmetric charge density, 𝑗0 = 𝜌𝑐𝑕(𝑟). 

Solving (17) iteratively, we have for the vacuum polarization contribution to the potential 

𝑉𝑣𝑎𝑐
𝐷 =

4𝛼2

15𝑀2
𝜌𝑐𝑕 𝑟                                                                             (19) 

 We made a comparison between the results obtained by using two densities. One in the Gaussianform, 

equation (21), while the second is in the exponential form, equation (22), and those obtained using 

Uehlingpotential 𝑈𝑜(𝑟), [10], where 

𝑈𝑜 𝑟 = −
𝑍𝛼2

3𝜋𝑟
 𝑑𝑡

∞

1

 2𝑡2 + 1 

𝑡4
  𝑡2 − 1 𝑒−2𝑚𝑡𝑟                                         (20) 

 𝜌𝑐𝑕 𝑟  𝐺 =
1

𝜋3 2 𝑎3
𝑒− 𝑟 𝑎  2

     ;         𝑎 =  
2

3
 𝑟𝑝2  21  

 𝜌𝑐𝑕 𝑟  𝐸 =
𝜂3

8𝜋
𝑒−𝜂𝑟        ;         𝜂 =  12  𝑟𝑝2                                           (22) 

 𝑟𝑝
2 is the mean square radius of the proton. The parameters 𝑎 and 𝜂 control the shape of the potential.  

 

III. Energy Levels Corrections 
To obtain the energy levels correction we apply perturbation theory 

∆𝐸𝑛𝑙𝑗
𝑉𝑃 =   𝑅𝑛𝑙  𝑟  2 Δ𝐴𝑜

𝑉𝑃 𝑟 𝑟2𝑑𝑟                                                           (23) 

Where 𝑅𝑛𝑙  𝑟  is the radial unperturbed Coulomb wave functions of the orbiting particle, electron in hydrogen 

and muon in muonic hydrogen atom [11]. 

 

𝜓𝑛𝑙𝑚  𝑟, 𝜃, 𝜙 = 𝑅𝑛𝑙  𝑟 𝑌𝑙𝑚  𝜃, 𝜙                                                               (24) 
Where 

𝑅𝑛𝑙  𝑟 =  2𝑘 3 2 𝐴𝑛𝑙 𝜌
𝑙𝑒−𝜌 2 𝐹𝑛𝑙  𝜌                                                            (25) 

 

𝜌 = 2𝑘𝑟 
 

𝑘 =
𝑍

𝑎𝑜𝑛
 

 

𝐴𝑛𝑙 =  
 𝑛 − 𝑙 − 1 !

2𝑛  𝑛 + 1 ! 
3 

𝑎𝑜 =
1

𝜇𝛼
 

𝜇is the reduced mass of electron in case of hydrogen atom and reduced mass of muon in case of muonic 

hydrogen. 𝑛, 𝑙are the principle and orbital quantum numbers respectively.And 𝑌𝑙𝑚  𝜃, 𝜙  are the spherical 

harmonics.For relativistic calculations, we take the wave function in the form [6] 

 

 



Finite Size Uehling Corrections in Energy Levels of Hydrogen and Muonic Hydrogen Atom 

DOI: 10.9790/4861-07516066                                            www.iosrjournals.org                                      63 | Page 

 𝑔 𝑟 

𝑓 𝑟 
 =  

± 2𝜆 3 2 

Γ 2𝛾 + 1  
 𝑚𝑜𝑐2 ± 𝐸 Γ 2𝛾 + 𝑛′ + 1 

4𝑚𝑜𝑐2  𝑛 ′+𝛾 𝑚𝑜𝑐2

𝐸
 

 𝑛 ′+𝛾 𝑚𝑜𝑐2

𝐸
− 𝑘 𝑛′!

 2𝜆𝑟 𝛾−1𝑒−𝜆𝑟 × 

×   
 𝑛′ + 𝛾 𝑚𝑜𝑐2

𝐸
− 𝑘 𝐹 −𝑛′, 2𝛾 + 1; 2𝜆𝑟 ∓ 𝑛′𝐹 1 − 𝑛′, 2𝛾 + 1; 2𝜆𝑟         (26) 

Which explicitly implies   𝑓2 + 𝑔2 𝑟2𝑑𝑟 = 1
∞

0
, and 𝑚𝑜  is the reduced mass of the corresponding particle. 

And, 

𝑘 =  
− 𝑙 + 1 = − 𝑗 +

1

2
 𝑓𝑜𝑟𝑗 = 𝑙 +

1

2

𝑙 =  𝑗 +
1

2
 𝑓𝑜𝑟𝑗 = 𝑙 −

1

2

  

𝛾 = ± 𝑘2 −  𝑍𝛼 2 

𝐸 = 𝑚𝑜𝑐2

 
 
 
 
 

1 +
 𝑍𝛼 2

 𝑛 − 𝑗 −
1

2
+   𝑗 +

1

2
 

2
−  𝑍𝛼 2 

1 2 

 

2

 
 
 
 
 
−1 2 

 

𝜆 =
 𝑚𝑜

2𝑐4 − 𝐸2 1 2 

ℏ𝑐
 

𝑛′ = 𝑛 − 𝑗 −
1

2
𝑛 = 1,2,3, … 

𝐹 𝑎, 𝑐; 𝑥 = 1 +
𝑎

𝑐
𝑥 +

𝑎 𝑎 + 1 

𝑐 𝑐 + 1 

𝑥2

2!
+ ⋯ 

 

IV. Results and Discussion 
 In these calculations we use the relativistic units ℏ = 𝑐 = 1 and the electron mass 

𝑚 = 0.5109989 𝑀𝑒𝑉 and the muon mass 𝑚𝜇 = 105.658357 𝑀𝑒𝑉 and 𝛼 = 1 137.0359998  is the fine 

structure constant and< 𝑟𝑝
2 >1 2 =  0.9295 (𝑓𝑚) for Gaussian potential and < 𝑟𝑝

2 >1 2  =  0.9553 (𝑓𝑚) for 

exponential potential.Figure 1 shows the spherically symmetric charge distribution of the proton, equations (21) 

and (22). Figure 2 is the point proton Uehling potential, equation (20). It is clear that this potential is a short 

range potential.  Figures 3-a and 3-b show the comparison between the exact potential and its approximate 

shape. Figure 3-c represents the comparison between the two approximate potentials 

 
Fig. 1.A Comparison between the exponential and Gaussian proton charge densities in  
configuration, 𝑟, and momentum, 𝑞, space.  

0 0.083 0.17 0.25 0.33 0.42 0.5

0.006

0.0045

0.003

0.0015

Uo r( )

r  
 

 

Fig.2. Is the electronic Uehling potential for thepoint charge proton, 𝑈𝑜 𝑟 . 
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Fig. 3.a. Comparison between exact exponential potential, VE,and its approximatedexponentialpotential, VAE. 

b. Comparison between exact Gaussian potential, VG,and approximated Gaussian potential, VAG. 
c. Comparison between approximated Gaussian, VAG, and approximated exponential potential, VAE. 

 

 
Fig. 4. Shows the distributions of the electron states (1s, 2s, 3s, 2p, 3p, 3d) in case of Schrödinger’s wave  

functions. 
 

 
Fig. 5.Shows the distributions of the muonic hydrogen states (1s, 2s, 3s, 2p, 3p, 3d) in caseof Schrödinger’s  
wave functions. 

 

 Figure 4. Shows the distributions of the electron states (1s, 2s, 3s, 2p, 3p, 3d) in case of Schrödinger’s 

wave functions.The corresponding distributions for muonic hydrogen are shown in figure 5 for the same 

states.In these distributions, we take the reduced mass of muon in place of its mass.Looking at figures 4 and 5, 

the shapeare the same except that, in case of muon the distributions are more closely to the proton center, and 

the overlap with the potential is more than that of the electron,which explains the higher values of the vacuum 

polarization corrections in the energy levels in case of muon than in case of electron.  See table 1 and table 2.To 

study the relativistic effect we take the wave functions from equation (26). Tables 1 and 2 show that the 

corrections decreases with the increase in the principle quantum number of the state. These corrections in case 

of point charge potential are approximately the same as those calculated by the two approximated (Gaussian and 

exponential) potentials for the s-states.The corrections in energy levels calculated with approximated Gaussian 

potential and exponential one agree to the second decimal for s-states as shown in table 1.The corrections as a 

hole for muonic atom are much higher than the corresponding corrections for hydrogen atom as shown in tables 

1 and 2. This comes as a result of the more overlap of muon states with proton than that of electron states.In 

case of muonic hydrogen atom, the corrections agree to the first decimal in case of approximated Gaussian and 

exponential potentials in the s-states. For the 2p state corrections of muonicatom the results are nearly the same. 
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Which explains the approximately same values of the Lamb shift. Table 3 shows a comparison for the Lamb 

shift in case of muonic hydrogen (∆𝐸2𝑝 − ∆𝐸2𝑠). In general, the value of this Lamb shift is between 205-

206 𝑚𝑒𝑉. The relativistic values of this shift are higher than the non-relativistic in the second decimal. The 

Lamb shift calculated with the approximated Gaussian potential has the highest values compared to the values 

calculated by Uehling potential and the approximated exponential potential. The fine structure correction values 

are very small compared to the values of the Lamb shift, the higher value is obtained in case of approximated 

Gaussian potential while the lowest value is in case of the point charge Uehling potential.   

  

Table1.Vacuum polarization corrections for energy levels of thehydrogen atom calculated with 

Schrödingerwave functionsin (𝑒𝑉) 
Hydrogen atom 

State 
Uehling potential (Point 

Charge) 

Approximated Gaussian 

potential (AGP) 

Approximated exponential 

potential (AEP) 

1s −8.8959033 × 10−7 −8.9169474 × 10−7 −8.9117327 × 10−7 

2s −1.1119785 × 10−7 −1.1146149 × 10−7 −1.1139618 × 10−7 

3s −3.2947459 × 10−8 −3.3025607 × 10−8 −3.3006251 × 10−8 

4s −1.3899702 × 10−8 −1.3932675 × 10−8 −1.3924508 × 10−8 

2p −3.1660475 × 10−13 −1.1812519 × 10−13 −1.5856255 × 10−13 

3p −1.1118033 × 10−13 −4.1481523 × 10−14 −5.5681707 × 10−14 

3d −9.7389533 × 10−20 −4.8782316 × 10−21 −1.3199193 × 10−19 

 

 

Table2. Vacuum polarization corrections for energy levels of themuonic atom calculated with Schrödingerwave 

functionsin (𝑒𝑉) 

Muonic atom 

State 
Uehling Potential (Point 

Charge) 

Approximated Gaussian 

Potential (AGP) 

Approximated Exponential 

Potential (AEP) 

1s −1.8988523 −1.9214441 −1.91659 

2s −2.195864 × 10−1 −2.188657 × 10−1 −2.1905266 × 10−1 

3s −6.4277311 × 10−2 −6.3776909 × 10−2 −6.3915769 × 10−2 

4s −2.7005198 × 10−2 −2.6750391 × 10−2 −2.6822146 × 10−2 

2p −1.4576756 × 10−2 −1.2058891 × 10−2 −1.2997757 × 10−2 

3p −4.7694767 × 10−3 −4.1543179 × 10−3 −4.4221641 × 10−3 

3d −1.1998811 × 10−4 −1.9855728 × 10−5 −3.8733148 × 10−5 

 

 

Table3.Lamb shift for different potentials (∆𝐸2𝑝 − ∆𝐸2𝑠) in 𝑚𝑒𝑉 in mionic atom 

 state Point Charge (AGP) (AEP) 

Schrodinger 

functions 
∆𝐸2𝑝 − ∆𝐸2𝑠  205.009644 206.806809 206.054903 

Dirac functions 
∆𝐸2𝑝  1 2  

− ∆𝐸2𝑠  205.03049 206.82023 206.07044 

∆𝐸2𝑝  3 2  
− ∆𝐸2𝑠  205.03551 206.8257 206.07579 

Fine structure contribution  

(L-S coupling) 

 ∆𝐸2𝑝 3 2  
− ∆𝐸2𝑝 1 2    

0.00502 0.00547 0.00535 

 

 

V. Conclusion 
 From these results, we can conclude that the corrections in energies in case of muon are much higher 

than in case of hydrogen atom. These corrections decrease with the increase in the principle quantumnumber. 

There is no great difference between the results obtained for the three studied potentials. The corrections in 

energy levels obtained by taking the proton density in Gaussian form and exponential shape are 

approximatelyequal. In case of non-relativistic and relativistic calculations the finite size proton gives Lamb 

shift values very near from that using point charge proton. The fine structure contribution (L-S 

coupling ∆𝐸2𝑝 3 2  
− ∆𝐸2𝑝 1 2  

 ) is very small compared to the Lamb shift. 
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