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Abstract: Corrections in energy levels of hydrogen and muonic hydrogen atom are calculated using Uehling
potential with point and finite size proton. The finite size protonis used by introducing the charge density of the
proton. The derivative expansion theory is used to obtain approximate finite size potentials by taking two forms
of the proton charge densities (Gaussian and the exponential). The three potentials (point charge and
approximated Gaussian and exponential potentials) give approximately the same results. These calculations are
performed with Schrédinger and Dirac coulomb wave functions using perturbation theory. For point proton
there is a very small difference (in the second decimal) in the Lamb shiftbetween the results calculated
bySchrédinger wave functions and those with Diracwave functions. The finite size of proton gives values of
Lamb shifthigher than that of point charge. The fine structure correction is very small compared to the Lamb
shift values.
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. Introduction

The electronic vacuum polarization effects and in particular the Uehling potential plays an important
role in the calculations of the energy levels and wave functions in muonic atoms. It is responsible for
thedominantquantum electrodynamics (QED) effects in atoms with heavy orbiting particle (such as muon [1]).
The Uehling potential is able to calculate relativistic corrections for a variety of levels in atoms [2]. One of the
important effects is the finite nuclear size. This effect depends on nuclear charge Ze and principle and orbital
quantum numbers, n and [, respectively. The low [ states and mostly, the 1s and 2s states are sensitive to the
finite nuclear size effects. They have been used to determine the charge radius of nuclei starting fromhydrogen
[3] to Uranium [4]. In this paper we calculated the Uehling corrections in the energy levels (1s, 2s, 3s,4s, 2p,
3p and 3d) of hydrogen and muonic hydrogen atom for the pointand finite size proton using Schrodinger wave
functions. The Lamb shift(AE,, — AE,)is calculated in case of nonrelativistic [5] and relativistic wave
functions [6] usingboth point and finite size proton by applying perturbation theory.

I1. One photon exchange Uehling Potential

A simple example of the effective Lagrangian formalism and the validity of the derivative expansion
(DE) we consider the vacuum polarization process in QED. Abundant evidence exists which supports the idea
that QED is the fundamental theory of electromagnetic interactions below 100 GeV. As well, it is usually
considered to be the most well understood physical field theory. The simplest form is that of a theory of spin-1/2
charged fermions with fieldy and massm, and charge e, withinteractions mediated by the spin-1 massless gauge
field for photons, A,. The QED Lagrangian in the Feynman gauge is
Logp = P[y, (10" — eA*) — My — %Ew F —%(a,,Aﬂ)2 + 6L 1)

E, =09,A, —9,A,

One treatsthis case perturbatively about the free particle solution. For this setting, we will clearly be
able to see the effect of the shape of the source density in a calculation that has the same flavor as theDE
approximation. The analysis is simplified by treating the interaction as a perturbation in the coupling and
comparing quantities only toO(a),where a = e?/4m is the usual fine structure constant. This is accomplished
by considering the modification of the free photon propagator by the O(a) vacuum polarization insertion. In
momentum-space, the propagator iD,z (q) modified by

iDap (q) = iDoag (@) + iDogy (@)1 (q)iDgyp (q) )

Note that from gauge invarianceq”I1,, (q) = 0, which dictates the Lorentz invariant form
u v

= (g7 ) ©

So that

DOI: 10.9790/4861-07516066 www.iosrjournals.org 60 | Page



Finite Size Uehling Corrections in Energy Levels of Hydrogen and Muonic Hydrogen Atom

. i9ap i9ap )
D =— 4
l af (CI) qz +ie (qz +l€)2 (q ) ( )
From the Feynman rules of QED with the usual charge renormalization, the propagator polarization
insertion is found to be [7]
1

2
T(q?) = 2?“(12 f dzz(1-2) 1n<1 -z(1-2) %) ®)
0

This integral can be evaluated, and for the case of a stationary source, the momentum is space-like,
2 — -2
q° = —q*, and

+1

)

To obtain an expression for the potential we fold the background spherically symmetric charge density
source, p. (1), over the new part of the propagator. For a time independent source

d3q .. .Tp(—¢?
(27336”"‘ Rl(qlf )pch(q) ™
0

The angular part is integrated, leaving
2a d sin(qr) Tz (—q?)

1+4

”2

) aq/ 5 4M2 2M2
q*) =——%—- 1+

= _)l
3t 3 q2 Zn

E _
Vvac_

E =
Vvac T q qr q ch( ) (8)
0
Where
@) = | dPxel®* =d4n | d m(qr) 9
pcr(q xe'* po (x) = 4m | drr? Pen(T) )]

0 0
This expression gives the exact effect of the vacuum polarization in theDE theory (toO(a?)). Since the DE
coefficients has the form

oI (qz) 10°11,(q%)
1=~y 2= T3 50002 (10)
2(q*) 2 0(a*)* | 2.,

And
I, (q%) = —Lq“ (11)

s 15t M? o _ ) s
One can evaluate these coefficientsusing equation (10) and (11), giving

a

=0, Zy= g—og (12)

The result Z; = 0 is a manifestation of charge conversation, which implies that corrections to the
charge density are total derivatives that vanish under a spatial integration. This allows us to write an effective
Lagrangian for low energy photons that takes into account the vacuum polarization loop in an additional
derivative term. The full effective one-loop Lagrangian will contain contributions for the photon-electron vertex
correction that are of the order a?. It is reffered to as the Euler and Heisenberg Effective Lagrangian [8]. Here
we are interested in the order « part (only the vacuum polarization)

1 a
Lopp = =7 b F™ = Wauw 0"F,; —j*A, (13)
The fermion part of the Lagrangian is dropped here, and an external source current j# is included. The

gauge fixing term can be droppedbecause we will restrict ourselves to the time like part of the vector potential in
the case where it is independent of time. The suitable form for the Euler-Lagrange equation is

a_[’_a (a—[’)+32<a—[’)—0 14
04, " \a@a)) "7 \a@@a)) a

Considering the time-like part of the potential Ayand a source currentj* = §#%j,, we obtain a modified
form of Maxwell’s equation

2 ]
0°4p =jo + 157 Mza Ao, (15)
Which for a time independent potential becomes

20 i __ %
VeAy = —Jo M Ay (16)

Making use of the identity V2(1/|x|) = —4n&(X) this may be written as an integrodifferential equation:
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A(*)—lfd3' L (oG + =% v,
o= ar) = T s, M2 olX
1 a 1
— 37 1, 3. 2 2 27
_—4n d>x lﬁ, ﬂljo(x)+—60 szd x<V |5C”—5f)|o)v Ap(X)
3.7
fd Jo( - 1om MZV Ay(X) 17)

As the electromagnetic coupllng a |s small we can solve this equation iteratively by substituting for
the RHS A, with the LHSA, in an iterative manner. For example, with a point-like source withcharge —Ze we
have j,(¥) = —Zes® (%) , so

. Ze? a .

Ay(X) = —W—WVZA()(X)
_ Za . 463 (%) 18
TR Y M (18)

This is the familiar term, which contributes to the Lamb shift in hydrogen [9]. To understand how

useful the effective Lagrangian is, here we consider the spherically symmetric charge density, jo = pqq (7).
Solving (17) iteratively, we have for the vacuum polarization contribution to the potential

4q?
Topgz Pt (r) (19)

We made a comparison between the results obtained by using two densities. One in the Gaussianform,
equation (21), while the second is in the exponential form, equation (22), and those obtained using
Uehlingpotential U, (r), [10], where

Za? 2t2+1)
Uo (T) = _ﬁ dtT\/ (tz - l)e_zm” (20)

1 2 ’2
= —(r/a)* . = |=
pch(r)l(; _7T3/2a3e e ’ a= 3(Tp2>(21)

3
par (Mg =—e™ ;= /12/<rp2> (22)

D _
Vvac_

8m
(rp )is the mean square radius of the proton. The parameters a and n control the shape of the potential.

I11. Energy Levels Corrections
To obtain the energy levels correction we apply perturbation theory

AV = f |Ru ()2 AAYP (r)rdr @3)

Where R, (1) is the radial unperturbed Coulomb wave functions of the orbiting particle, electron in hydrogen
and muon in muonic hydrogen atom [11].

ll}nlm (T', 9: d)) = Rnl (T)Ylm (9' ¢) (24)
Where
Rnl (7") = (Zk)g/zAnlple_p/anl (P) (25)
p = 2kr
_ Z
B a,n
n-1-1)!
2n((n + 1))’
1
a, =—
ua

uis the reduced mass of electron in case of hydrogen atom and reduced mass of muon in case of muonic
hydrogen. n, lare the principle and orbital quantum numbers respectively.And Y, (8,¢) are the spherical
harmonics.For relativistic calculations, we take the wave function in the form [6]
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g() +(21)3/2 (m,c2 + EYT2y +n'+ 1) 4
= , , 2Ar)Y d
f(r)} r2y +1) 4m,c? (n +y;mac2 ((n +y;macz _ k) nl 2ar)" e X

E

Which explicitly implies fom(f2 + g¥)rdr = 1, and m, is the reduced mass of the corresponding particle.
And,

e | o |
x{(w—k>F(—n,2y+l;ZAr)+nF(1—n,2y+1;21r)} (26)

—(l+1)=—(j+%> forj=l+%

ko= 1 1
l=(j+§) forj=1-
Y =tk = (Za)?
—-1/2
[ ]
E=m,c*|1+ (za)*

.1 . 1)\? 1/2)?
[n—]—5+[(]+5) —(Z(X)Z] ]
(m§c4—E2)1/2

hc
, 1
n =n—j—§n=1,2,3,...
a(a +1)x?
c(c+1) 2!

A=

a
F(a,c;x) = 1+Ex+

1V. Results and Discussion

In these calculations we wuse the relativistic units A=c=1 and the electron mass
m = 0.5109989 MeV and the muon mass m, = 105.658357 MeV and a = 1/137.0359998 is the fine
structure constant and< r? >1/2= 0.9295 (fm) for Gaussian potential and < r? >'/2 = 0.9553 (fm) for
exponential potential.Figure 1 shows the spherically symmetric charge distribution of the proton, equations (21)
and (22). Figure 2 is the point proton Uehling potential, equation (20). It is clear that this potential is a short
range potential. Figures 3-a and 3-b show the comparison between the exact potential and its approximate
shape. Figure 3-c represents the comparison between the two approximate potentials
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Fig. 1.A Comparison between the exponential and Gaussian proton charge densities in
configuration, r, and momentum, q, space.
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Fig.2. Is the electronic Uehling potential for thepoint charge proton, U, (r).
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Fig. 3.a. Comparison between exact exponential potential, VE,and its approximatedexponentialpotential, VAE.
b. Comparison between exact Gaussian potential, VG,and approximated Gaussian potential, VAG.
c. Comparison between approximated Gaussian, VAG, and approximated exponential potential, VAE.
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Fig. 4. Shows the distributions of the electron states (1s, 2s, 3s, 2p, 3p, 3d) in case of Schrodinger’s wave
functions.
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Fig. 5.Shows the distributions of the muonic hydrogen states (1s, 2s, 3s, 2p, 3p, 3d) in caseof Schrédinger’s
wave functions.

Figure 4. Shows the distributions of the electron states (1s, 2s, 3s, 2p, 3p, 3d) in case of Schrodinger’s
wave functions.The corresponding distributions for muonic hydrogen are shown in figure 5 for the same
states.In these distributions, we take the reduced mass of muon in place of its mass.Looking at figures 4 and 5,
the shapeare the same except that, in case of muon the distributions are more closely to the proton center, and
the overlap with the potential is more than that of the electron,which explains the higher values of the vacuum
polarization corrections in the energy levels in case of muon than in case of electron. See table 1 and table 2.To
study the relativistic effect we take the wave functions from equation (26). Tables 1 and 2 show that the
corrections decreases with the increase in the principle quantum number of the state. These corrections in case
of point charge potential are approximately the same as those calculated by the two approximated (Gaussian and
exponential) potentials for the s-states. The corrections in energy levels calculated with approximated Gaussian
potential and exponential one agree to the second decimal for s-states as shown in table 1.The corrections as a
hole for muonic atom are much higher than the corresponding corrections for hydrogen atom as shown in tables
1 and 2. This comes as a result of the more overlap of muon states with proton than that of electron states.In
case of muonic hydrogen atom, the corrections agree to the first decimal in case of approximated Gaussian and
exponential potentials in the s-states. For the 2p state corrections of muonicatom the results are nearly the same.
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Which explains the approximately same values of the Lamb shift. Table 3 shows a comparison for the Lamb
shift in case of muonic hydrogen (AE,, — AE,). In general, the value of this Lamb shift is between 205-
206 meV. The relativistic values of this shift are higher than the non-relativistic in the second decimal. The
Lamb shift calculated with the approximated Gaussian potential has the highest values compared to the values
calculated by Uehling potential and the approximated exponential potential. The fine structure correction values
are very small compared to the values of the Lamb shift, the higher value is obtained in case of approximated
Gaussian potential while the lowest value is in case of the point charge Uehling potential.

Tablel.Vacuum polarization corrections for energy levels of thehydrogen atom calculated with
Schrédingerwave functionsin (eV)

Hydrogen atom
State Uehling potential (Point Approximzf\ted Gaussian Approximat_ed exponential
Charge) potential (AGP) potential (AEP)
1s —8.8959033 x 1077 —8.9169474 x 1077 —8.9117327 x 1077
2s —1.1119785 x 10~ —1.1146149 x 1077 —1.1139618 x 10~
3s —3.2947459 x 1078 —3.3025607 x 1078 —3.3006251 x 10~8
4s —1.3899702 x 1078 —1.3932675 x 1078 —1.3924508 x 108
2p —3.1660475 x 10713 —1.1812519 x 10713 —1.5856255 x 10713
3p —1.1118033 x 1013 —4.1481523 x 1014 —5.5681707 x 1014
3d —9.,7389533 x 10720 —4.8782316 x 1021 —1.3199193 x 10~1°

Table2. Vacuum polarization corrections for energy levels of themuonic atom calculated with Schrédingerwave

functionsin (eV)

Muonic atom
State Uehling Potential (Point Approximz_ited Gaussian Approximatfed Exponential
Charge) Potential (AGP) Potential (AEP)

1s —1.8988523 —1.9214441 —1.91659

2s —2.195864 x 107! —2.188657 x 1071 —2.1905266 x 107!
3s —6.4277311 x 1072 —6.3776909 x 1072 —6.3915769 x 1072
4s —2.7005198 x 1072 —2.6750391 x 1072 —2.6822146 x 1072
2p —1.4576756 x 1072 —1.2058891 x 1072 —1.2997757 x 1072
3p —4.7694767 x 1073 —4.1543179 x 1073 —4.4221641 x 1073
3d —1.1998811 x 10~* —1.9855728 x 1075 —3.8733148 x 107°

Table3.Lamb shift for different potentials (AE,, — AE,) in meV in mionic atom

state Point Charge (AGP) (AEP)

Schrodinger _
functions AE;, — AEy 205.009644 206.806809 206.054903
i . AE,, am ~ AEy; 205.03049 206.82023 206.07044

Dirac functions
AEyp 5,y — AE2s 205.03551 206.8257 206.07579
Fine structure contribution
(L-S coupling) 0.00502 0.00547 0.00535
(AEZP(s/z) B AEZPu/z))

V. Conclusion
From these results, we can conclude that the corrections in energies in case of muon are much higher
than in case of hydrogen atom. These corrections decrease with the increase in the principle quantumnumber.
There is no great difference between the results obtained for the three studied potentials. The corrections in
energy levels obtained by taking the proton density in Gaussian form and exponential shape are
approximatelyequal. In case of non-relativistic and relativistic calculations the finite size proton gives Lamb
shift values very near from that using point charge proton. The fine structure contribution (L-S

coupling (AEZP(M) — AEZpu/z))) is very small compared to the Lamb shift.
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