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Abstract: Dirac-Maxwell equations are generalized by introducing electric scalar field and magnetic scalar 

field in order to obey second order differential equations by both scalar fields and vector fields without 

implementation of Lorentz condition on them. It makes the electric charges and magnetic charges time-

dependent generating scalar field and magnetic scalar field respectively. These scalar fields further contribute 

to the electric vector field and magnetic vector field. They are further responsible to produce longitudinal 

components of electric vector field wave and magnetic vector field wave in addition to their transverse 

components as usual. 
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I. Introduction 
Symmetry is the ethical sense of nature and is always expected to be satisfied by theoretical models 

used to define performance of many phenomena observed. In Maxwell's equations, the symmetry is obtained by 

Dirac [1-6] by introducing magnetic monopoles as the source of static magnetic field. When the magnetic 

charge comes into motion produces electric field. Thus Dirac generalized the Maxwell's equations, called Dirac-

Maxwell’s equations (DME), and in vacuum they are  
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where e
 and m

 are the electric charge and magnetic monopole densities respectively, and je and jm are electric 

and magnetic current densities respectively. Solutions of these DME were given by Cabibbo & Ferrari [7], 

Epistein [8], Ferrari [9] as 
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These sources (of electric charges and magnetic monopoles), here, are subjected to the continuity equation, viz. 
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and hence they are said to be conserved. This condition on the sources then leads to the Lorentz gauge on the 

four potentials, viz. 
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Thus the Lorentz condition on the potentials makes the electric charges and magnetic monopoles time 

independent. The equation (3) indicates that the electric charges or magnetic monopoles cannot be created or 

destroyed but they can be transferred from one position to other. However, in pair production electron and 

positron gets created from a gamma particle in which again charge is conserved but the equation (3) does not 

hold strictly. Hence one should allow the electric charges and magnetic monopoles to be function of time and to 

look their conservation in another way. If the sources are allowed to be functions of time then the above Dirac-

Maxwell equations are not able to describe electromagnetic fields of such sources. One has to generalize these 

equations in such a way that the generalized set of equations should be able to explain electromagnetic fields of 

time dependent as well as time independent sources. Such an attempt has been done by [10 -13] and generalized 
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the DME by introducing two scalar fields in the DM equation which are actually replacement of the Lorentz 

gauges on the electric and magnetic potentials. These Generalized Dirac-Maxwell’s equations (GDME) are 
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These have usual solutions for E and H given by equations (2) and in addition to that they have solutions for 

scalar fields as  
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where E0 and H0 are the electric and magnetic scalar fields respectively. Clearly these scalar fields are the 

removal of the Lorentz gauge on their respective potentials. 

As the Lorentz gauge on the potentials is removed, one expect that the continuity equation need not be 

hold by the sources but again total amount of charge should be conserved. This means that at any position if 

charge on a particle is decreasing then the decreased amount of the charge should produce a field, which then 

should cause to rise the same amount of charge on other particle (say sink) to which it is interlinked. Such a 

created field should be a scalar field given by equations (6) and should be proportional to the rate of change of 

charge on the source. If the charges become time-independent then the scalar fields should vanish with 

satisfying the Lorentz condition by the potentials and the GDME then reduce to the original DME. Hence the set 

of GDME given by equations (5) becomes proper generalization of the Dirac-Maxwell equations. 

Our aim is to investigate effect of the scalar fields (E0 and H0) on the electromagnetic vector field 

waves and their propagation in vacuum. 

 

II. Wave equations for the four components of electromagnetic fields 
The differential equations satisfied by the four components of the electromagnetic fields in vacuum are  
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The first two equations are the same as satisfied by the vector fields in the usual DME and the last two are 

outcome of the generalization from the last two equations. We conclude that the continuity equation for the 

sources due to generalization gets modified. 

 In absence of the sources all the four components of the EM fields satisfy the following differential 

wave equation and all of them propagate with velocity c in vacuum. 
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where   = E, H, E0, H0.  

It follows from the wave equation one can write a monochromatic four component electromagnetic wave in the 

form 

  r)k-t-i(0
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 etr        (9a) 
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where k is a propagation constant given by /c, the amplitudes E
0
 and H

0
 are constant vectors and the other two 

amplitudes of the scalar field waves 0
0E  and 0

0H  are constant scalars. Our interest is in the plane wave solutions 

as they are simplest one to describe. 

 Using these wave equations GDME give 
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Last two equations show that the wave field vectors E and H have components parallel to the 

propagation vector due to presence of the scalar components E0 and H0. Thus the electromagnetic vector field 

waves have, now, no longer only transverse character but in addition to the transverse components it has 

longitudinal vector components. If both the scalar field waves are absent then the electromagnetic vector field 

wave attains its transverse character again. If one of the scalar field waves is absent, say H0, then the magnetic 

vector field wave has no longitudinal component though the electric scalar field wave is present. The electric 

scalar field wave produces longitudinal component of the electric vector field wave only. Similarly if electric 

scalar field wave is absent but magnetic scalar wave is present then it produces longitudinally polarized 

magnetic vector field wave in addition to its transverse nature. It has no longitudinal component of the electric 

field wave. Thus the presence of the scalar field waves is responsible for longitudinal polarization of the 

electromagnetic vector field waves in addition to their transverse nature. 

 

III. Energy in the four component electromagnetic fields 
Equations (5c and 5d) from the set of GDME give 
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Further the dot product obeys 
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Thus equation (11) takes the form 
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Integrating over a volume V, one obtains  
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Thus the Poynting vector takes the form  
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This the generalized form of the Poynting vector. 

Now, the current distribution by the vector j
e
 can be considered as made up of various charges q moving with 

velocity u. Therefore the volume integral of Ej
e   may be replaced by
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where E denotes the electric field at the position of the charge 
e

αq . As usual the work done per unit time on the 

charge e
αq  by the electromagnetic field is  

  Eu   e
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e
α q

dt
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where e
αT  is the kinetic energy of the 

th
 electric charged particle. 

Similarly the work done per unit time on 
th

 magnetic monopole by the electromagnetic field is given by  
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where e
αT  is the kinetic energy of the 

th 
magnetic monopole. 

Thus considering the volume integral of the product of electric scalar field and the electric charge, one writes 
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We expect that it must be amount of work done by the electric scalar field on the electric charges. Let us denote 

this amount of work done per unit time is equivalent to a rate of change of kinetic energy like term denoting by 
e
αT0 . Therefore, 
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Similarly, the magnetic scalar field αH0  linked to a magnetic monopole 
e
αq  does work on magnetic monopoles 

as given by  
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in the given volume. Thus the net electromagnetic field energy density in the volume is then  
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Let us construct the surface 'a' of the integral in such a way that in the interval of time under consideration none 

of the particles (electric charges and magnetic monopoles) will cross the surface. Then the equation (16) gives  
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where the sum over  and  includes only those particles lying within the volume enclose by the 

surface ‘a’. In this equation the left-hand side is the time rate of change of energy of the field and particle 

contained within the volume V. Thus the surface integral of Sn must be considered as the energy flux of the 

electromagnetic field flowing out of the volume bounded by the surface 'a'. Clearly from equation (24) one 

concludes that there is an unavoidable contribution from the scalar fields to the net energy in EM fields in 

addition to the vector fields. If the scalar fields are absent then the equation (24) reduces to the usual form given 

by  
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IV. Energy propagation due to a four component electromagnetic waves 
We know that when three component electromagnetic waves propagate through space from their source 

to distant receiving point, there is a transfer of energy from source to the receiver. A relation between rate of this 

energy transfer and the amplitude of electric and magnetic field strength (E and H) is called Poynting theorem 

(equation 24). The direction of energy flow is along the Poynting vector. In free space a three component 

electromagnetic wave has purely transverse nature (i.e. E and H are both perpendicular to the direction of 

propagation) and as the direction of the Poynting vector (   H  ES 
4

c
) is in the same direction as that of 

the propagation vector, there occurs a transfer of energy at that time. In case of the four component 

electromagnetic wave the vector fields E and H have no longer transverse nature and the Poynting vector also 

gets modified. Let us see whether the Poynting vector has the same direction as that of the propagation vector 

and there is any possibility of energy flow. 

Let us consider the scalar field wave in free space as  
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with constant amplitudes. 

The first equation of GDME, gives 
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with n = k/k. 

Thus the presence of the electric scalar field wave produces longitudinal component of the electric vector field 

wave. Now the electric vector field wave has longitudinal component in addition to its transverse component as 

usual. Therefore we can have an electric vector field wave as  
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With considering the second equation of GDME, we get  
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In similar way that of the electric scalar fields the presence of the magnetic scalar field wave also 

produces longitudinal component of the magnetic vector field wave. The magnetic vector field wave has 

longitudinal component in addition to its transverse component as usual. Therefore we are again restricted to 

consider the magnetic vector field wave as 
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The Poynting vector for such a four component EM wave with use of equations (29 to 33), gives  
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Thus the direction of the Poynting vector is the same as that of the wave propagation vector k and hence 

there must be transfer of energy from source of the four component EM waves to distant receiving point. 

Contribution to the energy is both from the vector as well as scalar fields. 

 

V. Discussion 
We have established that generalization of the Dirac-Maxwell equations lifts the Lorentz condition on 

the potentials. Further the potentials satisfy the d’Almberts equation without restriction of any gauge making the 

potentials gauge free. Therefore the sources not satisfy the continuity equation. In being away of the sources the 

vector fields (E,  H) as well as the scalar fields (E0, H0) satisfy differential wave equation and all of them 

propagate with velocity c in vacuum. Scalar field wave has some interesting feature that it produces longitudinal 

polarization of the vector field wave. In the presence of plane electric scalar field wave produces longitudinal 

polarization of the electric vector and the magnetic plane scalar field wave produces longitudinal polarization in 

the magnetic vector field wave. These longitudinal polarizations are not possible in the usual Maxwellian 

theory. The generalized form of the Lorentz force indicates that the scalar field wave takes active part in the 

force and it produces change in the velocity of the charge. The electric scalar field produces deceleration in the 

electric charge and the magnetic scalar field produces deceleration in the magnetic monopole. If the velocity of 

the charged particle becomes zero then the force on it due to scalar field disappears. The generalization of the 

Poynting theorem discovers the contribution of the scalar field in addition to the vector field in the four 
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component electromagnetic wave in the vacuum is in the direction of propagation of the wave and hence making 

possible propagation of the electromagnetic energy along the propagation of wave.  
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