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Abstract:  

In this article, the authors start with a discussion of various quantum states and their associated density matrices. 

The evaluation of the density matrices for pure, mixed, and entangled states is done elaborately. The concept of 

the trace of the density matrices is then explored and its relation with the purity of any state is discussed. The 

mathematical process of diagonalization of a matrix is studied for pure, mixed, and entangled states.  
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I. Introduction  
Quantum states for any quantum system can be classified as pure, mixed, and entangled. The simplest 

example of understanding the pure quantum states is to solve Schrodinger’s equation for the Hydrogen atom. The 

mixed states are composed of pure states with their classical probability amplitudes of occurrences (e.g., mixing 

of the pure states due to measurements and/or the environmental interactions including noise, or due to faulty 

operators/gates/observables, all these resulting in the loss of quantum-ness of the system). Whereas the mixed 

states are separable, the entangled states cannot be separated. The purity of the density matrix is maximum for a 

pure and an entangled state, and it reduces for the mixed states. Any unitary operation performed on a quantum 

state alters its density matrix. 

 

II. Quantum States: Pure, Mixed, and Entangled  

 
A Hydrogen atom defines a single qubit system. The solution of the Schrodinger’s equation for a 

Hydrogen atom yields Eigen values which are the various Quantum numbers (abbreviated in this paper as QN), 

namely the Principal QN, the Orbital QN, the Magnetic QN, and the Spin QN) (Griffiths 2003). The corresponding 

wave functions give the Eigen Vectors corresponding to each ‘pure Quantum state’ belonging to a separable 

complex Hilbert space (vector space). In a single Qubit system, we define just the two basis quantum states 

represented as the state vectors in bra-ket notation: |0⟩ and  |1⟩. The pure Quantum states in a Hydrogen atom are 

the two energy levels, i.e., an electron in the ground state denotes a pure Quantum state designated as |0⟩ = [
1
0
] 

in the matrix notation (Aitken 2017). Similarly, an electron in 1st excited energy level (state) denotes another pure 

Quantum state designated as |1⟩ = [
0
1
] in the matrix representation. Linear Algebra tells us that a linear 

combination (superposition) of these two pure states is also a valid solution of the Schrodinger’s equation and 

hence represents a legitimate superposition state (which is a pure quantum phenomenon) of a single qubit quantum 

system, denoted as: |𝛹⟩ = 𝛼|0⟩ + 𝛽|1⟩ = 𝛼 [
1
0
] + 𝛽 [

0
1
] = [

𝛼
𝛽] . Here 𝛼 and 𝛽 are the complex numbers from 

where the quantum probabilities of the electron to be in pure state |0⟩ and |1⟩ respectively can be extracted by 

computing their absolute square values. An electron in this superposition state can be viewed as making a 

transition between the ground state and the 1st excited state. Any measurement on this electron will collapse this 

superposition state into one of the basis states yielding the classical information of either |0⟩ or |1⟩ , along with 

release of a photon of energy equal to the difference of the excited state energy and the ground state energy, or 

absorption of a photon of energy equal to the difference of the excited state energy and the ground state energy, 

respectively. An observable (a mathematical operator) is needed to extract the classical information from the pure 

states, e.g., the energy operator, the angular momentum operator.  
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A mixed quantum state is obtained by classical probabilistic mixing of the pure quantum states of one or 

more sub-quantum systems. Whereas a pure state and entangled state are represented as points on the Bloch 

sphere, a mixed state is represented by a point inside the Bloch sphere. The authors would like to emphasize that 

a mixed state is not to be compared with a superposition state, a superposition state carries the quantum probability 

amplitudes of its constituent pure states, while a mixed state carries the classical amplitudes of the constituent 

pure/sub-system states. Pure states do not have any uncertainty outcome when an operator is operated upon it. A 

mixed state has uncertainty in the outcome when a certain operator is applied on it, and this uncertainty is given 

by the classical probability associated with its constituent pure states. When in a superposition state, the particle 

is present in all the constituent states at the same time, which has been proven by the interference experiments. 

Although the act of measurement on the particle in the superposition state, gradually pushes the particle out of the 

superposition state into one of its constituent states due to de-coherence (Schlosshauer 2007). 

   

We now discuss the density matrices defined for pure, and mixed states (Blum 2012; Peres 1996). By 

definition, the density matrix for a quantum state |ψ⟩ is evaluates as the outer product of |ψ⟩ with itself: 

𝝆 = |ψ⟩ ⟨ψ|   (1) 

For a pure state, the density matrix is an idempotent matrix, i.e., 𝝆𝟐 = 𝝆 . It is a projection operator, with 

its Trace =Rank=1=sum of its Eigen values=sum of all the diagonal terms. It implies that it has only one Eigen 

value as 1 and all other Eigen values as 0. Studying some of the examples of pure vector states to compute:  

Let  |ψ0⟩ = |0⟩ = [
1
0
]   (2) 

𝝆𝟎 = |ψ
0
⟩ ⟨ψ

0
| = |0⟩ ⟨0| = [

1

0
] [1 0] = [

1 0

0 0
]  (3) 

 

Considering a superposition state (which is also a pure state) |ψ+⟩ which lies on the positive 𝑥 −axis 

on the Bloch Sphere:  

 

|ψ+⟩ =
(|0⟩+|1⟩)

√2
= |+⟩ =

1

√2
[
1
0
] +

1

√2
[
0
1
] =

1

√2
[
1
1
] (4) 

 

𝝆+ = |ψ
+
⟩ ⟨ψ

+
| = |+⟩ ⟨+| =

1

√2
[
1

1
]

1

√2
[1 1] =

1

2
[
1 1

1 1
] (5) 

 

As another example, consider |ψℓ⟩ which lies on the negative 𝑦 −axis on the Bloch sphere: 

 

|ψℓ⟩ =
(|0⟩−𝑖|1⟩)

√2
= |ℓ⟩ =

1

√2
[
1
0
] −

𝑖

√2
[
0
1
] =

1

√2
[
1
−𝑖

] (5) 

 

𝝆ℓ = |ψ
ℓ
⟩ ⟨ψ

ℓ
| = |ℓ⟩ ⟨ℓ| =

1

√2
[
1

−𝑖
]

1

√2
[1 +𝑖] =

1

2
[
1 +𝑖

−𝑖 1
] (6) 

 

Generalizing for 𝑛-qubits, we have 𝑁 = 2𝑛 state vectors:  

|ψ𝑁⟩ =

[
 
 
 
 
 

𝛼0

𝛼1

𝛼2

𝛼3

⋮
𝛼𝑁−1]

 
 
 
 
 

  (7) 

 

 

𝝆𝑵 = |ψ
N
⟩ ⟨ψ

N
| =

[
 
 
 
 
 

𝛼0

𝛼1

𝛼2

𝛼3

⋮

𝛼𝑁−1]
 
 
 
 
 

[𝛼0
∗ 𝛼1

∗ 𝛼2
∗    𝛼3

∗ … 𝛼𝑁−1
∗   ] = [

𝛼0𝛼0
∗ ⋯ 𝛼0𝛼𝑁−1

∗

⋮ ⋱ ⋮

𝛼𝑁−1𝛼0
∗ ⋯ 𝛼𝑁−1𝛼𝑁−1

∗

] (8) 

 

From Eqn. (8), we notice that the diagonal terms of the 𝑁 × 𝑁 density matrix are of the form 𝛼𝑖𝛼𝑖
∗ =

|𝛼𝑖|
2, which give us the probability of finding a state vector (basis vector) in a particular Eigen state. The off-
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diagonal terms give the information about the coherence of these states, i.e., whether the states are pure or mixed 

states.  

 

An example of 𝑛 = 2 qubits, implying the number of state vectors is 𝑁 = 22 = 4, a superposition state 

denoted as |ψ4⟩ (which is a pure state) with equal quantum probability of all the 4 state vectors is written as: 

 

|ψ4⟩ =
(|00⟩+|01⟩+|10⟩+|11⟩)

2
=

1

2
[

1
0
0
0

] +
1

2
[

0
1
0
0

] +
1

2
[

0
0
1
0

] +
1

2
[

0
0
0
1

] =
1

2
[

1
1
1
1

]   (9) 

 

𝝆4 = |ψ
4
⟩ ⟨ψ

4
| =

1

2
[

1

1

1

1

]
1

2
[1 1    1 1] =

1

4
[

1 1    1 1

1 1    1 1

1 1    1 1

1 1    1 1

]   (10) 

 

Eqns. (9) and (10) represent a pure state (in superposition of all 4 state vector for a 2-qubit system) and 

its corresponding density matrix showcasing maximum off-diagonal terms signifying maximum coherence, and 

the diagonal terms summing up to unity probability (i.e., trace=1 for a pure state) (Luo and Sun 2017; Schlosshauer 

2007; Schlosshauer 2019). 

 

Considering now an example of evaluating the density matrix of a mixed state: Let a pure 1-qubit 

superposition state |ψ
+
⟩ = |+⟩ =  

(|0⟩+|1⟩)

√2
= |+⟩ =

1

√2
[
1

0
] +

1

√2
[
0

1
] =

1

√2
[
1

1
] be transmitted from location A 

to B. Due to environmental factors the transmitted qubit |+⟩ gets flipped to qubit |– ⟩  by a 25% probability (this 

is classical probability), with the result that the qubit received at B is either |+⟩ or |– ⟩ with 75 % and 25% 

probability respectively. Hence the qubit received and ‘measured’ at B is in a mixed state represented as: |ψ
±
⟩ =

{
|+⟩        ,       |−⟩

3

4
(𝑷+)  ,

1

4
(𝑷−)

} = {

1

√2
[
1

1
] ,

1

√2
[

1

−1
]

    
3

4
    ,        

1

4

}; In this representation, the upper row tells the constituents of the 

measured mixed state at location B, and the bottom row tells the corresponding classical probability of 

measurement (𝑷). The individual states of a mixed state need not be the Eigen states of the computational basis. 

The density matrix can be evaluated as  

 

𝝆± = 𝑷±|ψ±⟩ ⟨ψ±| =
3

4
(|+⟩ ⟨+|)  +  

1

4
(|−⟩ ⟨−|)   (11) 

 

𝝆± =
3

4

1

√2
[
1
1
]

1

√2
[1  1] +

1

4

1

√2
[

1
−1

]
1

√2
[1   − 1]  (12) 

 

𝝆± =
3

8
[
1 1
1 1

] +
1

8
[

1 −1
−1 1

]    (13) 

 

𝝆± =
1

8
[
4 0
0 4

] =
1

2
[
1 0
0 1

]      (14) 

 

The density matrix of the considered mixed state shows zero off-diagonal terms, meaning that there is 

no coherence in the mixed state measured at B (Luo and Sun 2017). The density matrix for a mixed state of an 

𝑛 −qubit system (𝑁 = 2𝑛) can in general be written as: 

 

𝝆 = ∑ 𝑷𝒊
𝑵−𝟏
𝒊=𝟎 |ψ𝑖⟩⟨ψi|     (15) 

 

Where 𝑷𝒊 is the classical probability of 𝑖𝑡ℎ constituent vector state of the mixed state. Eqn. (15) also 

signifies the post-measurement density matrix of the ensemble of the quantum states at destination B in this 

example. And the density matrix of the corresponding pure quantum state |ψ+⟩ transmitted from point A being 

given by Eqn. (5) above. Comparing Eqns. (5) and (14), we can state that the process of measurement (of an 

observable) leads to interaction with the environment and hence erases the off-diagonal elements that carry the 

superposition/entanglement information, hence converting the density matrix towards a diagonal matrix. A 

completely de-coherent state has a density matrix with only finite diagonal elements.  
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Mathematically a matrix 𝐴 can be diagonalized as  

ℙ−1𝐴ℙ = 𝐷    (16) 

Where ℙ is a matrix consisting of Eigen vectors of matrix 𝐴 and 𝐷 is the corresponding diagonal matrix 

of matrix 𝐴.  

Computing the Eigen values (λ), Eigen vectors (υ), and the corresponding diagonal matrix (𝐷) for a 

pure state vector |+⟩ as follows: Starting from Eqn. (5), we calculate the two Eigen values of 𝝆+ =
1

2
[
1 1
1 1

] by 

solving the determinant  
|𝝆+ − λI| = 0    (17) 

 

We get 𝜆1,2 = 0, 1 and corresponding 𝜐1,2 = [
𝑎

−𝑎
] , [

𝑏
𝑏
] where 𝑎, 𝑏 are complex constants. 

Diagonalization of  𝝆+ as per Eqn. (16) yields 𝐷 = [
0 0
0 1

], which has Trace= rank=1. 

 

We will now consider maximally entangled states, e.g., the four Bell states (Bell 1964): 

  

|β00⟩ =  
(|00⟩+|11⟩)

√2
=

1

√2
[

1
0
0
0

] +
1

√2
[

0
0
0
1

] =
1

√2
[

1
0
0
1

]    (18) 

The density matrix for |β00⟩ can be evaluated as: 

 

𝝆β00
= |β00⟩ ⟨β00| =

1

√2
[

1
0
0
1

]
1

√2
[1 0    0 1] =

1

2
[

1 0    0 1
0 0    0 0
0 0    0 0
1 0    0 1

]   (19) 

 

 

|β01⟩ =  
(|01⟩+|10⟩)

√2
=

1

√2
[

0
1
0
0

] +
1

√2
[

0
0
1
0

] =
1

√2
[

0
1
1
0

]    (20) 

The density matrix for |β01⟩ can be evaluated as: 

 

𝝆β01
= |β01⟩ ⟨β01| =

1

√2
[

0
1
1
0

]
1

√2
[0 1    1 0] =

1

2
[

0 0    0 0
0 1    1 0
0 1    1 0
0 0    0 0

]   (21) 

 

|β10⟩ =  
(|01⟩ −|10⟩)

√2
=

1

√2
[

0
1
0
0

] −
1

√2
[

0
0
1
0

] =
1

√2
[

0
1

−1
0

]    (22) 

The density matrix for |β10⟩ can be evaluated as: 

 

𝝆β10
= |β10⟩ ⟨β10| =

1

√2
[

0
1

−1
0

]
1

√2
[0 1    −1 0] =

1

2
[

1 0      0 1
0 1    −1 0
0 −1    1 0
1 0      0 1

]   (23) 

 

|β11⟩ =  
(|00⟩−|11⟩)

√2
=

1

√2
[

1
0
0
0

] −
1

√2
[

0
0
0
1

] =
1

√2
[

1
0
0

−1

]    (24) 

The density matrix for |β00⟩ can be evaluated as: 
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𝝆β11
= |β11⟩ ⟨β11| =

1

√2
[

1
0
0

−1

]
1

√2
[1 0    0 −1] =

1

2
[

1 0    0 −1
0 0    0 0
0 0    0 0

−1 0    0 1

]   (25) 

 

Eqns. (19), (21), (23), and (25) show that the density matrices corresponding to the maximally entangled 

Bell states have Trace=Ranks=1. The off-diagonal terms are finite (unity) only along the other diagonal (not the 

main diagonal) of these density matrices and are symmetrically placed with respect to the diagonal terms, showing 

maximum coherence. 

Another term to find the purity (𝛾) of a quantum state is defined as  

 

𝛾 = 𝑇𝑟(𝝆𝟐)     (26) 

 

For pure and completely entangled states, 𝝆 = 𝝆𝟐, i.e., the density matrix is idempotent, but for mixed 

states, this does not hold true. The value of purity (𝛾) lies in the range 
1

2𝑛 ≤ 𝛾 ≤ 1 where 𝑛 is the number of qubits 

in the quantum system under consideration. For pure states, 𝛾 = 1 because  𝑇𝑟(𝝆) = 𝑇𝑟(𝝆𝟐) = 1. Whereas for 

completely mixed states, it can be shown that 𝛾 =
1

2𝑛 (Blum 2012).     

For the sake of completeness, when a unitary operator is applied on a vector state, e.g.,  

|ψ𝑖𝑛⟩  
𝑈
→ |ψ𝑜𝑢𝑡⟩     (27) 

 

Then it can be proved that the evolution of the corresponding density matrix 𝝆𝒊𝒏 through the same 

unitary operation yields 𝝆𝒐𝒖𝒕 which is the density matrix for |ψ𝑜𝑢𝑡⟩ : 
 

𝝆𝒊𝒏

𝑈
→𝝆𝒐𝒖𝒕 = 𝑈𝝆𝒊𝒏𝑈

†     (28) 

 

Where the symbol † signifies conjugate transpose.  

 

III. Discussion  
The authors have analyzed the density matrices for pure, mixed, and entangled quantum states and shown 

that the Trace for all these cases is one. The concept of purity of a quantum state is discussed.  

 

References  
[1].  Aitken, A.C.: Determinants and matrices. Read Books Ltd (2017) 

[2].  Bell, J.S.: On the einstein podolsky rosen paradox. Phys. Phys. Fiz. 1, 195 (1964) 
[3].  Blum, K.: Density matrix theory and applications. Springer Science & Business Media (2012) 

[4].  Griffiths, D.J.: Ouantum Mechanics. (2003) 

[5].  Luo, S., Sun, Y.: Quantum coherence versus quantum uncertainty. Phys. Rev. A. 96, 22130 (2017) 
[6].  Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996) 

[7].  Schlosshauer, D.: The quantum-to-classical transition. Front. Collect. (Springer-Verlag, 2007). (2007) 

[8].  Schlosshauer, M.: Quantum decoherence. Phys. Rep. 831, 1–57 (2019) 

 


