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Abstract 
Many-body interaction is a fundamental concept in quantum mechanics that describes the interaction between 

multiple particles. This phenomenon is crucial in understanding various physical systems, including solids, 

liquids, and gases. In this article, we provide an overview of many-body interaction, its significance, and its 

applications. 
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I. Introduction 
The many-body interaction [A.K. Sarkar and S. Sengupta Phys. Stat.Solidi 36, 359 [1967], is given by 

𝜙𝑚 =
1

2
∑  ∑  𝑐𝑛𝑛

′
1′1" 𝐴 • exp [

𝑟(11′)+𝑟(11′′)

𝑝
]                                              …(1) 

Where p and A are the parameters for many-body interactions. 

In the equation (1), the summation  l runs over all the atoms which are common nearest neighbours of 

the atoms 1' and 1” 
→
𝑟

 
(1) is the position vector of the atom in the 1𝑡ℎ lattice and 

→
𝑟

 
(𝑢′) =

→
𝑟

 
(1) −

→
𝑟

 
(1′). 

We shall consider a FCC lattice of lattice-constant 2𝑟𝑜 and nearest neighbour distance 𝑟 = √2 • 𝑟𝑜. we 

shall calculate the force constent matrices for the many-body interactions given by equation(1). The force-constant 

between two atoms (1′1′′) which have common nearest neighbours is given by 

𝜙1′1′′
𝑚 =

𝜕2𝜙

𝜕𝑟𝑖(1′)𝜕𝑟𝑖′(1′′)
 

= 𝛴1(𝑐𝑛𝑛) 𝐴 •
exp(−

2𝑟

𝑝
)

𝑝2•𝑟2 𝑟𝑖(11′) • 𝑟𝑖′(11′′)                                            …(2) 

 

 
Fig. (1): This figure shows the positions of the particles for which non-vanishing three body-force constants 

exist other particles are obtained by symmetry. 
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The force constant matrices for different types of atoms as shown in Fig.(1) are as follows- 

𝜙𝑚(1′𝑎) = 𝑝 |
−2           0            0 
0            1             0
0            0             1

 

|               𝜙𝑚(1′𝑏) = −
1

2
𝑝 |

1            0              1
0            0             0
1            0             1

 

|       …(3) 

𝜙𝑚(1′𝑐) = 𝑝 |
2             0             0 
0             0         − 1
0          − 1            0

 

|               𝜙𝑚(1′𝑑) = −
1

2
𝑝 |

2             1              1
1             0             1
1             1             0

 

| 

Where 𝑃 = (
𝐴

𝑃2) exp [−
2𝑟

𝑃
] 

In addition to the above, equation (1) gives a non-vanishing force constant between nearest neighbours 

which is essentially of the same form as that of a two-body interaction and is given by 

𝜙𝑖𝑖′(11′) = 𝛴1′′≠1′(𝑛.𝑛.𝑜𝑓 1)𝜙𝑖𝑖′[𝑟(11′), 𝑟(11′′)] + 𝛴1′′≠1(𝑛.𝑛.𝑜𝑓 1′)𝜙𝑖𝑖′[𝑟(11) + 𝑟(1′1′′)] 

Where 

𝜙𝑖𝑖′[𝑟(11′) • 𝑟(11′′)] =
𝐴

𝑃
[−

𝑟𝑖(11′)•𝑟
𝑖′(11′)

𝑟(11′)3 +
𝜕

𝑖𝑖′

𝑟(11′)
−

𝑟𝑖(11′)𝑟𝑖(11′′)

𝑃•𝑟(11′)2 −
𝑟𝑖(11′)•𝑟

𝑖′(11′′)

𝑃•𝑟(11′)𝑟(11′′)
exp [−

𝑟(11′)+𝑟(11′′)

𝑃
]                                                                                                                 

…(4) 

This gives the force constant matrix between the atoms (001) and (010) as 

𝜙(1′𝑛) = ||

−10𝑃 +
11

√2
𝑄       0       − 10𝑃 −

11

√2
𝑄 

    0                11√2𝑄              0      

−10𝑃 −
11

√2
𝑄       0        − 10𝑃 +

11

√2
𝑄

 

||                                            …(5) 

Where 𝑄 =
𝐴

𝑃•𝑟𝑜
exp [−

2𝑟

𝑃
] 

Using the force constant matrices given in equations (3) and (5), we get the following elements of the 

dynamical matrix for the many-body interaction 

𝐷𝑖𝑖
𝑚 (

→
𝑞

 

) =
1

𝑚
[8𝑃𝑠𝑖𝑛2 𝑞1 •

𝑎

2
− 4𝑃 (sin2  𝑞𝑗 •

𝑎

2
+ sin2  𝑞𝑘 •

𝑎

2
) − 2𝑃𝑐𝑜𝑠 𝑞𝑖 • 𝑎(cos  𝑞𝑗 • 𝑎 + cos  𝑞𝑘 • 𝑎)

+ 8𝑃𝑐𝑜𝑠 𝑞𝑖 •
𝑎

2
• cos  𝑞𝑗𝑎 • cos  𝑞𝑘𝑎 − (40𝑃 − 22√2𝑄) cos  𝑞𝑖

𝑎

2
(cos  𝑞𝑗

𝑎

2
+ cos  𝑞𝑘

𝑎

2
)

+ 44√2𝑄𝑐𝑜𝑠 𝑞𝑗

𝑎

2
cos  𝑞𝑘

𝑎

2
− 84𝑃

+ 88√2𝑄]                                                                                                         … (6) 

𝐷𝑖𝑗
𝑚 (

→
𝑞

 

) =
1

𝑚
[2𝑃 • sin  𝑞𝑖𝑎 sin  𝑞𝑗𝑎 + 4𝑃𝑠𝑖𝑛 𝑞𝑖

𝑎

2
• sin  𝑞𝑗

𝑎

2

+ 4𝑃 (sin  𝑞𝑖𝑎 • sin  𝑞𝑗

𝑎

2
+ sin  𝑞𝑖

𝑎

2
• sin  𝑞𝑗𝑎) cos  𝑞𝑘

𝑎

2
+ 4𝑃𝑠𝑖𝑛 𝑞𝑖

𝑎

2
• sin  𝑞𝑘

𝑎

2

+ (40𝑃 + 22√2𝑄) sin  𝑞𝑖

𝑎

2
sin   𝑞𝑗

𝑎

2
]                                               … (7) 

Other elements of the dynamical matrix for the many-body interaction can be written by the cyclic 

permutation of the indices 𝑖, 𝑗 and 𝑘. 

 

II. Elements Of Dynamical Matrix For Long-Rance Interaction 
The matrix-elements corresponding to the ion-electron (long-range) interaction have been obtained by 

picturising the metallic crystal to consist of a series of point-ions immersed in a uniform compensation background 

of free-electron gas. The displacement 
→
𝑢

 
(1′𝑘′) of (1′k′) the ion from its equilibrium position, 

→
𝑅°

 

 gives rise to a 

change in the electrostatic potential of the system at the point 
→
𝑟

 

 which can be written as 

𝑍(1′𝑘′)𝑒 [𝑉𝐼−𝐸 {
→
𝑟

 

−
→
𝑅

 
(1′𝑘′)} 𝑉𝐼−𝐸 {

→
𝑟

 

−
→
𝑅°

 
(1′𝑘′)}]                                 …(8) 

Where 
→
𝑅

 
(1′𝑘′) =

→
𝑅°

 
(1′𝑘′) +

→
𝑢

 
(1′𝑘′)  is the position of the (1′𝑘′)𝑡ℎ  ion after displacement and 

[𝑍(1′𝑘′)𝑒] is the charge on this ion. 𝑉𝐼−𝐸 is the long range potential produced by a unit charge at the origin. The 

force exerted on the (1𝑘)𝑡ℎ ion having charge [𝑍(1𝑘)𝑒] is given by 
→
𝐹

 

= [−𝑍(1𝑘)𝑍(1′𝑘′)𝑒2]𝛻[𝑉𝐼−𝐸 {
→
𝑟

 

−
→
𝑅

 
(1′𝑘′)} − 𝑉𝐼−𝐸 {

→
𝑟

 

−
→
𝑅°

 
(1′𝑘′)}

→
𝑅

 
(1′𝑘′) =

→
𝑅°

 
(1′𝑘′) 

= {−𝑍(1𝑘)𝑍(1′𝑘′)𝑒2}𝛻[𝛻𝑉𝐼−𝐸 (
→
𝑅

 

)
→
𝑢

 
(1′𝑘′) 

= −𝛻2 [{𝑍(1𝑘)𝑍(1′𝑘′)𝑒2}𝑉𝐼−𝐸 (
→
𝑅

 

)]
→
𝑢

 
(1′𝑘′) 

= −𝛻2 [𝑉 (
→
𝑅

 

)]
→
𝑢

 
(1′𝑘′) = −𝑉𝑖𝑗(1𝑘, 1′𝑘′)𝑢(1′𝑘′)                     …(9) 

Where 
→
𝑅

 

= [
→
𝑅°

 
(1𝑘) −

→
𝑅°

 
(1′𝑘′)] is the equilibrium separation between (1𝑘)𝑡ℎ ion and (1′𝑘′)𝑡ℎ ion. 
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𝑉(𝑅) = {𝑍(1𝑘)𝑍(1′𝑘′)𝑒2}𝑉𝐼−𝐸 (
→
𝑅

 

) 

= potential energy of the pair of ions (1𝑘) and (1′𝑘′) and 𝑉𝑖𝑗(1𝑘, 1′𝑘′) is the force constant matrix. 

For a screened charge the interaction potential is of the form 

𝑉𝐼−𝐸~𝑅−1𝑒−𝜆𝑅                                                                     …(10) 

Where 𝜆 is the screening parameter. 

As the calculation of the force constant matrix is conveniently carried out in the momentum space, we 

work with the Fourier transform of the potential function 𝑉𝐼−𝐸  which is given by 

𝑉𝐼−𝐸 =
4𝜋

(2𝜋)3 ∫
[exp(𝑖

→
𝑘

 
•

→
𝑅

 
)]𝑑

→
𝑘

 

|
→
𝑘

 
|
2

+𝜆2(|
→
𝑘

 
|)

                                                       …(11) 

Here 
→
𝑘

 

 is the electron wave vector and 𝜆 (|
→
𝑘

 

|) a wave vector dependent screening parameter. 

The long-range dynamical matrix representing the ion-electron interaction is therefore given by 

𝐷𝑖𝑗
𝐼−𝐸 (

→
𝑞

 

) = ∑  1′ 𝑉𝑖𝑗(1𝑘, 1′𝑘′) exp [−𝑖
→
𝑞

 

{𝑅°(1𝑘) − 𝑅° (1′𝑘′)}]                         …(12) 

From above equations matrix element is obtained which is written as 

𝐷𝑖𝑗
𝐼−𝐸 (

→
𝑞

 

) = 𝛴1′

4𝜋𝑍(1𝑘)𝑍(1′𝑘′)𝑒2

(2𝜋)3
[∫

𝑘𝑖𝑘𝑗 exp (𝑖
→
𝑘

 

•
→
𝑅

 

) [exp [−𝑖
→
𝑞

 

• {
→
𝑅°

 
(1𝑘) −

→
𝑅°

 
(1′𝑘′)}]] 𝑑

→
𝑘

 

|
→
𝑘

 

|
2

+ 𝜆2 (|
→
𝑘

 

|)  
] 

=
4𝜋𝑒2𝑍1𝑘𝑍

18𝑘′

(2𝜋)3 [∫
𝑘𝑖𝑘𝑗𝑑𝑘 ∑  1′ exp[−𝑖(

→
𝑞

 
−

→
𝑘

 
)

→
𝑅°

 
(1𝑘)−

→
𝑅°

 
(1′𝑘′)]

 |
→
𝑘

 
|
2

+𝜆2(|
→
𝑘

 
|)  

]                                            …(13) 

Now we use the sum rule 

exp [−𝑖 (
→
𝑞

 

−
→
𝑘

 

) •
→
𝑅°

 
(1𝑘) −

→
𝑅°

 
(1′𝑘′)] = (2𝜋)3 ∑  →

ℎ
 (

→
𝑞

 

−
→
𝑘

 

+
→
ℎ

 

)                            …(14) 

Where h is the reciprocal lattice vector. 𝜕 is the usual Dirac delta function and is the atomic volume. Thus 

from equation (13) we get 

𝐷𝑖𝑗
𝐼−𝐸 (

→
𝑞

 

) =
4𝜋𝑒2𝑍(1𝑘)𝑍

(1′𝑘′)
∑  →

ℎ

 (
→
𝑞

 
+

→
ℎ

 
)

𝑖
(

→
𝑞

 
+

→
ℎ

 
)

𝑗

|
→
𝑞

 
+

→
ℎ

 
|
2

+𝜆2(|
→
𝑞

 
+

→
ℎ

 
|)

+ 𝐶                            …(15) 

The constant C is determined by the boundary condition of infinitesimal displacement invariance which 

implies that 𝐷𝑖𝑗
𝐼−𝐸(𝑞) should vanish for non-vibrating lattice. From this we obtain 

𝐶 = −
4𝜋𝑒2𝑍(1𝑘)𝑍(1′𝑘′)

𝛺
∑  

→
ℎ

 
≠0

ℎ𝑖ℎ𝑗

|
→
ℎ

 

|
2

+ 𝜆2 (|
→
ℎ

 

|)
 

 

And equation (15) reduces to 

𝐷
𝑖𝑗

𝐼−𝐸(
→
𝑞

 
)

=
4𝜋𝑍(1𝑘)𝑍(1′𝑘′)𝑒2

𝛺
[∑  

→
ℎ

 

(
→
𝑞

 

+
→
ℎ

 

)
𝑖

(
→
𝑞

 

+
→
ℎ

 

)
𝑗

|
→
𝑞

 

+
→
ℎ

 

|
2

+ 𝜆2 (|
→
𝑞

 

+
→
ℎ

 

|)

− ∑  
→
ℎ

 
≠0

ℎ𝑖ℎ𝑗

|
→
ℎ

 

|
2

+ 𝜆2 (|
→
ℎ

 

|)
] 

= 𝑘𝑒𝛺𝜆2(𝑜) [∑  →
ℎ

 

(
→
𝑞

 
+

→
ℎ

 
)

𝑖
(

→
𝑞

 
+

→
ℎ

 
)

𝑗

|
→
𝑞

 
+

→
ℎ

 
|
2

+𝜆2(|
→
𝑞

 
+

→
ℎ

 
|)

2 − ∑  →
ℎ

 
≠0

ℎ𝑖ℎ𝑗

|
→
ℎ

 
|
2

+𝜆2(|
→
ℎ

 
|)

]        …(16) 

Where 

𝐾𝑒 =
4𝜋𝑒2𝑍(1𝑘)𝑍(1′𝑘′)

𝛺2𝜆2(𝑜)
 

Is a constant depending upon the effective charge of the ions and the screening parameter 𝜆(𝑜). Finally 

we obtain the following expression by substituting A For 𝑘𝑒𝛺𝜆2(𝑜) in equation (16) 

𝐷
𝑖𝑗

𝐼−𝐸(
→
𝑞

 
)

= 𝐴 [∑  →
ℎ

 

(
→
𝑞

 
+

→
ℎ

 
)

𝑖
(

→
𝑞

 
+

→
ℎ

 
)

𝑗

|
→
𝑞

 
+

→
ℎ

 
|
2

+𝜆2(|
→
𝑞

 
+

→
ℎ

 
|)

− ∑  →
ℎ

 
≠0

ℎ𝑖ℎ𝑗

|
→
ℎ

 
|
2

+𝜆2(|
→
ℎ

 
|)

]                      …(17) 

The reciprocal vector 
→
ℎ

 

  determined by the structure of the crystal. I n 
→
ℎ

 

  summation  ℎ𝑥 + ℎ𝑦 + ℎ𝑧 

should be even for BCC lattice and  ℎ𝑥 + ℎ𝑦 + ℎ𝑧 should be all odd or all even in FCC lattices. 

Langer and Vosko showed that the screening parameter in a high density electron gas was a function of 

electron wave number 
→
𝑘

 

 and so screening parameter should be multiplied by a function 𝑓(𝑡) , where 

𝑓(𝑡) = 0.5 +
1−𝑡2

4𝑡
log  

1+𝑡

1−𝑡
                                                                  …(18) 
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With 𝑡 =
→
𝑘

 

2𝑘𝐹
 , where 𝐾𝐹 is known as Fermi wave vector. Function 𝑓(𝑡) goes to unity for 𝑡 = 0 and has 

a logarithmic singularity as 𝑡 = 1 , which gives rise to the so called Kohn anomalies in the dispersion curves. 

The effective potential for large 
→
𝐾

 

 values corresponding to the core-region of the ion, consists of two 

parts viz. the potential energy of the nucleus which is negative and high kinetic energy associated with the rapid 

oscillations of the wave function within the core-region which is positive. The former is very nearly compensated 

by the later, and for large wave vector, there is, indeed, a tendency towards the exact cancellation of the two terms 

as shown by Phillips and Kleinman and Cohen et al and also by Sham and Ziman  in the case of monoatomic 

metals in which the Fermi surface does not deviate much from the spherical symmetry and also does not approach 

close to a zone-boundary. 

This cancellation effect was taken into account by introducing the decay function 𝑔2(𝑥) in the dynamical 

matrix such that 

𝑔2(𝑥) = [
3(sin 𝑥−𝑥𝑐𝑜𝑠 𝑥)

𝑥3 ]                                                              …(19) 

Where  𝑥 = |
→
𝑞

 

+
→
ℎ

 

| • 𝑟𝑒  , 

𝑟𝑒 = inter electron spacing = (
3

4πne
)

1

3
 , 𝑛𝑒 being the electron density. In the case of monovalent metals 

𝑟𝑒  is equal to the radius of atomic sphere 𝑟𝑜 . In the case of polyvalent metals, however 𝑟𝑒 = 𝑍−
1

3(𝑟𝑜), where z 

represents the valency of metals. 

Wall and Kohn have shown that introduction of 𝑔2(𝑥) is the essential modification of the free electron 

result which occurs if one assumes that the electron wave functions are of the Bloch-type. Some times this is 

referred to as the overlap integral or interference factor and follows from the wigner-Seitz model for the band 

structure. Krebs also suggested to insert this function in the expression of 𝐷𝑖𝑗
𝐼−𝐸(

→
𝑞

 

) to simulate the reducing effect 

of large h values. In the light of above facts the modified expressions for the matrix elements are given by 

𝐷
𝑖𝑗

𝐼−𝐸(
→
𝑞

 
)

= 𝐴 [∑  →
ℎ

 
(

→
𝑞

 
+

→
ℎ

 
)

2

𝑒
𝑔2(|

→
𝑞

 
+

→
ℎ

 
|)

 
•𝑟𝑒

|
→
𝑞

 
+

→
ℎ

 
|
2

+𝜆2(
→
𝑞

 
+

→
ℎ

 
)𝑓(𝑡1)

− ∑  →
ℎ

 
≠0

ℎ𝑒
2𝑔2(|ℎ|•𝑟𝑒)

|
→
ℎ

 
|
2

+𝜆2(|
→
ℎ

 
|)𝑓(𝑡2)

]            …(20)          𝐷
𝑖𝑗

𝐼−𝐸(
→
𝑞

 
)

=

𝐴 [∑  →
ℎ

 

(
→
𝑞

 
+

→
ℎ

 
)

𝑖

 

 
(

→
𝑞

 
+

→
ℎ

 
)

𝑗
𝑔2(|

→
𝑞

 
+

→
ℎ

 
|)

 
•𝑟𝑒

|
→
𝑞

 
+

→
ℎ

 
|
2

+𝜆2(
→
𝑞

 
+

→
ℎ

 
)𝑓(𝑡1)

− ∑  →
ℎ

 
≠0

ℎ𝑖ℎ𝑗𝑔2(|
→
ℎ |•𝑟𝑒)

|
→
ℎ

 
|
2

+𝜆2(|
→
ℎ

 
|)𝑓(𝑡2)

]                   …(21) 

If we take wigner-Sietz spheres and assume a uniform charge distribution of conduction electrons in the 

spheres, the boundary conditions on the ion-electron pseudopotential 𝑉𝐼−𝐸  are 

𝑉𝐼−𝐸 =
𝑍𝑒2

𝑟
                                   𝑟 > 𝑟𝑜 

=
3𝑍𝑒2

2𝑟𝑜

−
𝑍𝑒2𝑟2

2𝑟𝑜
3

                𝑟 < 𝑟𝑜 

Using this expression for ion-electron pseudopotential Fielek has obtained the following expression for 

the matrix elements. 

𝐷
𝑖𝑗

𝐼−𝐸(
→
𝑞

 
)

= 𝐴 ∑  →
ℎ

 [
(

→
𝑞

 
+

→
ℎ

 
)

 

 

 
(

→
𝑞

 
+

→
ℎ

 
)

 
𝑔2(

→
𝑞

 
+

→
ℎ

 
)𝑟𝑜

|
→
𝑞

 
+

→
ℎ

 
|
2

+𝜃(
→
𝑞

 
+

→
ℎ

 
)𝜆𝑇𝐹

−
→
ℎ

→
ℎ

  
𝑔2(|

→
ℎ |𝑟𝑜)

|
→
ℎ

 
|
2

+𝜆𝜃(
→
ℎ

 
)𝜆𝑇𝐹

]                         …(22) 

Where 𝜃  is the dielectric function, 𝜆𝑇𝐹  is the Thomas-Fermi screening parameter, is the Bohm-Pines 

screening parameter and 𝑟𝑜 is the Wigner-Seitz radius obtained from the unit cell volume. 

It may be noted that Krebs expressions can be obtained from the first principle by considering the ion to 

be a uniformaly spherical charge distribution of radius 𝑟𝑜 . As mentioned earlier 𝑟𝑜 is equal to 𝑟𝑒  is equal to 𝑟𝑒  , the 

inter electron spacing for mono-valent metals. 

 

III. Elastic Constants And Model Parameters 
The secular determinants can be expanded in the long wavelength limit (𝑞 → 0) because the wavelength 

of the plane wave in this case is much longer than the lattice spacing and medium behaves just like a continuous 

medium for the propagation of waves. 

Comparing the expanded determinants for long waves with the christoffel’s equation for the elastic waves 

in ordinary elastic continuum, we get the following expressions for the three elastic constants in terms of model 

parameters. 

𝐴[𝐶11 − 𝐾𝑒] = 2𝛼1 + 4𝛼2 + 72𝑃 − 22√2𝑄                                    …(23) 

𝑎[𝐶12 − 𝐾2] = 𝛼1 + 36𝑃 + 35√2𝑄                                                     …(24) 

𝑎𝐶44 = 𝛼1 + 32𝑃 − 33√2𝑄                                                                    …(25) 
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Where 𝐾𝑒 is the Bulk-modulus of electron gas. 
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