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Abstract
In the current work, we have considered an approach based on the canonical operator for-

mulation corresponding to the Klauder-Daubechies construction of a deformation of quantum
mechanics. We have applied this formulation to the Landan harmonic problem in order to
construct the quantization of its extended formulation, and i1ts quantum solution, allowing
for an explicit analysis of the limits 7o = 0 and m = 0 corresponding to the effective projec-
tion onto the lowest Landau sector of the systern. We have solved the physics spectrum of
this system by use to the Fock algebra in the Hilbert space. We hawve obtained the physical
spectrum as well as the diverse limits possible, leading to the algebraic structure of the non
commutative geometry of the Moyal space.
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1 Introduction

In this investigation, we focus on the classical Landan problem, which is generalised by the inclu-
sion of a harmonic potential, both in terms of its classical dynamiecs and its quantum resolution.
[t concerns a non-relativistic charged particle moving in a plane, subjected both to a perpendic-
ular magnetic field and to a spherically symmetric harmonic potential, characterised by its own
angular frequency. The correspondence between classical mechanics and quantum mechanics is
most evident within the framework of the Hamiltonian formalism, which is developed helow for
this system. In the classical approach, a canonical transformation was performed, whereby the
Clartesian coordinates were altered whilst ensuring the formulation dyvnamics of the system re-
mained consistent within the same phase space. Following the implementation of the canonical
transformation, an expression for the action is obtained in terms of Q@+ and Py coordinates defin-
ing a canonical transformation of the Hamiltonian formulation of the system not vet deformed
as Klauder-Dauhechies which then allows the two helicity sectors of the Landan problem to he
factored. Furthermore, under this factorisation, each helicity sector, with coordinates (Q4, Py)
or ((Q—, P—). has a dynamic similar with that of a harmonie oscillator characterided by an angular
frequency w_ or w..

The Klander-Dauhechies deformation of the system is not easy to build directly in terms
of the initial coordinates and the functional integral approach on coherent states because of the
external magnetic field. This is a situation for which the Klander-Daubechies approach is not
designed in its original form. It corresponds to the Klander-Daubechies deformation of each of
these decoupled or factorised harmonic oscillators. This Klander-Daubechies deformation, which
facilitates a rigorous and accurate definition of the functional integral, involves a parameter that
nltimatelv takes a zero value, analogons to a regularisation parameter. It is possible to choose this
parameter to be associated, for example, with a new fundamental time scale (see, for example,
[1], [7], [=]. [9]. [10], [11] and [12]), denoted below 7g. Initially, such a time scale would be linked
to the Planck mass or Planck time scale, in a context of relativistic quantum gravity, and the
implications of this correlation would need to be examined. Since the two oscillators associated
with the two helicity modes of motion in the plane of Landan’s problem are coupled, this means
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that their deformation, and then their quantization by deformation, amounts to taking the tensor
product for the Hilbert spaces concerned, results for a single oscillator for which the Klauder-
Daunbechies approach is perfectly snitable.

From a quantum perspective, the preferred methodological approach is purely algebraic.
This approach is hased on the use of an abstract Hilbert space, which serves as a theoretical
framework. The Hamiltonian of the system, as an abstract operator, acts on this Hilbert space,
thereby enabling the modelling and understanding of the underlving phvsical phenomena. In order
to quantify the system under consideration, it is essential to first identifyv its physical spectrum.
This process involves a thorough analvsis of the spectrum of the energy eigenstates and their
respective degeneracies. In addition, it is imperative to examine the evolution of this spectrum as
the limit 75 — 0. These considerations are developed with the help of a detailed analysis of the
Lagrangian and Hamiltonian formulations of the svstem. Furthermore, an exhanstive exploration
of the various coneceivable limits has heen undertaken, leading to the algebraic structure of the
non-commutative geometry. These are either zero mass limits for the original Landan problem
or zero time scale g limits for the Klander-Danbechies deformation. It is well known that the
zero mass limit for the Landau probhlem leads to the structure of the non-commutative plane.
The following questions arise: firstly, whether, in the approach of quantum dynamics proposed
by the Klauder-Daubechies deformation, the two limits comimute or not; secondly, whether it is
possible for another non-commutative plane structure to exist in the presence of the deformation

parameter 7y of the Klander-Danbechies formulation.

The original results presented in this work can be found with full details in [2], including
the construction of the functional integral representing the dynamics of a quantum system in the
Klauder-Daubechies deformation formulation. For this last point, we refer to the discussion on
this subject in reference [1], [3], [4], [5] and [6]. The structure of the present paper is delineated
as follows: Sect. 2 offers a brief highlight on The Landan problem and its deformation. The quan-
tisation of the harmonic Landau problem is discussed in Sect. 3. The quantum non-commutative
plane is described in Sect. 4. The canonical Hamiltonian formulation of the system is developed
in Sect. 5. A brief overview of the quantified svstem is given in Sect. 6. In Sect. 7, we have pre-
sented the Klander-Daubechies deformation analvsis. The rules of canonical quantisation and the
constraction of the algebra and diagonalisation of the Hamiltonian are described in Sects. 8 and
9 respectively. In Sect. 10, we discuss on the limit 75 — 0. The non-commutative geometry in the
Moval plane is treated in Sect. 11. Finally, the Klauder-Daubechies quantum non-commutative
plane is illustrated in Sect. 12 and we discuss and conclude our results in Sect. 13,

2 Landau problem and its deformation

In this study, we focused on the Landan problem, which is defined in a plane parametrised by
x; (i = 1,2), in the presence of a spherically svmmetric harmonic potential in the Eunclidean
plane with stiffness constant kg. In the symmetric ganuge for the potential vector deseribing the
homogeneons and transverse magnetic field, the svstem is defined by the following Lagrangian
function:

1 1 1 .
L= Eﬂli‘f,g — EBE-U;fg'Ij — E'RD'LE —°E, B =o0. (1)

It is obwvious that the parameter B, which can alwavs be assumed to be positive without loss of
generality by a judicious choice of plane orientation, playvs the crucial role of the product of the
particle’s electric charge and the magnetic field. While wqg = +/fq /e > 0 represents the angular
frequency of the spherically symmetrie harmonic potential. The quantity “E denotes an arbitrary
choice of mero energy for the classical system. In the context of this study, it is important to note
that the minimum energy value is subject to quantum corrections in the guantum system. Indeed,
it has been observed that, in the limit i = 0, the value of “F is reproduced. For the purposes of
this study, it is necessarv to introduce the following parameters,

/ 1 |B| 1 / 1 / 1 )
o — afomd 4+ Sl o — L oy — w2 —twe, w = 1/ m2uwd 2 _ 5 B2, :
d Tl Ehats c Wit e T ! WO+__18 l\‘mﬂ.o+4B (2)

KL

In the Heisenberg representation for guantum dyvnamics, the classical solutions are transformed
into quantum expressions for their time dependence. By taking the limit i = 0 in the expres-
sions of these latter dependencies, given later, the classical solutions for these dynamiecs are also
obtained. Consequently, these classical solutions are not explicitly provided here.

If the mass is zero, i.e. m — 0, the Lagrange funcrion previously referenced hecomes,
1 s 1 2 c c s o -
Lyeo = —sBevir; — —kox; — “FEo, Fp= lim “F. (3)
2 2 m—s0 ‘

Particularly, the index " NC7 is an abbreviation that designates the limit of the svstem. When
this limit is reached. the svatem undergoes a transformation, resulting in a system whose phase
space is of two dimension and corresponds to the Enclidean plane. In the guantum context,
however, the structure of the space of guantum states is the non-commnutative Fuclidean plane.
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We consider First, the action in its original form, with m # 0. and secondly in its Hamil-
tonian formulation. The conjugate momentum at x; coordinates are then defined by,

1 1 1 )
D = ma — EBEij_j. T = po (p-g + EBEUIj) , (4)

leading to the canonical Hamiltonian for the system defined by the construction,
H =a2yp; — L. (5)

Following substitution, the expression below is ohtained for the Hamiltonian. This expression
serves as the initial point from which the quantification of the system in Cartesian coordinates can
be conducted. The subsequent procedure is well established and is based on the correspondence
principle. The phase space is generated by the two pairs of conjugate variables (z, p;). The
Hamiltonian funection is expressed as follows,

H

1 1, 1 1.\ o1, 1 1
o= pi‘f‘EBEz'j'lj pi— o Pi+§BEijij +§Bfa'ja Pi+§BE'.ij'lj i+

1
+§kgxf +<E

1 1 1,
= m (p*'+§3'fw) + 5koxi +°F

1 ) + 1 o2 1 _I_CE 6)
= Zmpé Q?TT,w Ty 2u,.grzzj.:r:apj. . (6)

The Hamiltonian action associated is then

1 1 )
pl— _—'mngf + —weejrip; — °E. (7

L )
Ll:g(i‘f}?a—xiﬁ)—%a 2 2

In the deformed Klauder-Daubechies formulation, the deformed action take the form [1],

Ly = é (2yp; — 240;) — ﬁp? - %mwg:c? + %wcfzjrﬁpj + %-j.“ro (ipf + mwi‘?) - “Exp,
lim “Epp=°FE. (8)
T—+0
It is important to note that, in addition to the introduction of a fundamental time scale g,
whose limit ) = 0 is considered in order to reproduce the initial system for both its classical and
guantum dynamics, this deformation confers on the coordinates of the phase space of the initial
system, noted (x;, p; ), the nature of coordinates of a configuration space of four dimension, whose
phase space is itself of eight dimension. It is also noteworthy that the additional term proportional
to the time scale 1g is, in effect, equivalent to a kinetic energy term in the extended configuration
space (x4, pi). However, it is imperative to emphasise that the mass factor, proportional to 1y, is
an imaginary pure positive mass factor. This feature is pivotal to the rigorous definition of the
functional integral for the corresponding quantum system [1]. This last remark also illustrates
that, within the context of temporal evolution, initial conditions corresponding to purely real
values of (z,p;) inevitably result in trajectories in the complexified version of the configuration
space variables (z;.p;). However, this complexity is only apparent, because the formulation of
the dynamics, once deformed, only makes sense when considered in the context of the quantised
svstem and from the point of view of the functional integral. The changes of variables examined
in the context of the deformed system, with the help of the conjugate variables and the extended
phase space, which is characterised by a dimension of eight, need to be considered in the functional

DOI: 10.9790/4861-1702022352 www.iosrjournals.org 3 | Page



Heisenberg equation of motion approachto the non-Hermitian Hamiltonians with real spectrum

integral, a domain in which they are applicable and have been substantiated [1]. It should be
noted that these considerations have already heen explained in the literature [1]. This discussion
shows how the deformed system leads to a specific quantum spectrum. To this end, the results
obtained by considering two limits are compared: m = 0 and 5 = 0.

We consider now the zero-mass limit of the system, staring by the following terms which
contribute to the above action,

1 1 .
E:‘i"g (—p? —Hm..r.g) - — (p? + m2wla? — Bejjxip;) . (9)
This expression can be rewritten with a factor of mw in the first term and a square in the second
term as,

1'?'-'?'(] ( 2 a9, 2)

S 2
l p
P+ miw (pa + EBEUM) + mko»’«”?} : (10)

1
2m
In the zero mass limit, the consideration of configurations is constrained to the space defined by
the following condition,

1 )
i = —EBEij.’Cj. (11)

leading to the following expression,
1 1 1 )
p7 +mia? = EBQ-JZ‘? - (mkg - 1BQ) i} = EBQ-.i:E + mkod?. (12)

With this restriction, we have in limit m — 0,

T limp 1 1 1 1 1 -
N 0459.0 2 - . ,'\,
LK% — E%_BEB &€y — Ekol’i + E (_EBEUM'“LJ + EBEUI&.T_?) E
17, 1 1, ve Ne §
= E-:-TOBI.,; — 586«;31‘21‘3 = ER’[];L‘T- — °EYS, CERG = 4112:?10 ‘Exp. (13)
When zero mass limit is satisfied, that of 79 — 0 gives
1 . L. 9 . Ne g

Lye = —EBEEini‘j — Ekﬂxi + “Ene. ‘Eyc = hm Ey (14)

In each case, with regard to the time dependencies of these degrees of freedom, the classical
solutions are obtained from the quantum solutions in the Heisenberg image with the help of the
classical limit, A = 0.

3  Quantification of the harmonic Landau Problem.

In this section, we once again consider the function below, which describes the dynamics of a
particle of mass m in a magnetic field transverse to the plane of its motion.
1 4

L = -mi;

1 . 1 ‘e
2 — EBEUIin — Ek‘olg —“E. 115)

The conjugate momentums and velocities expressed in terms of conjugate momentums and con-
jugate coordinates are given by the following relationships,

1 1 1 .
P = may — EBEngj. T = oo (pz- + EBEU;L‘;) . (16)
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The canonic Hamiltonian is

o ! + lB 2+ 1R 2 4R
= Z bi €ijLj 2 0 '
g2 1 c o
= 3 p1 Sk ﬂ‘?«w x; 2uchijI-ipj +“E. (17)

It is important to acknowledge that the quantum system is defined by the Hamiltonian in its
quantum version, which corresponds to an abstract operator acting on an abstract Hilbert vector
space. This vector space is a representation of the following Heisenberg algebra,

(2, B;] = thdy;L. (18)

Given this algebraic structure of operators, let us first consider a first Euclidean Fock algebra,
i, =1,2., defined,

ai = |2 (3 + L, af = 52 (5 — — 19)
VY 2e mwtt ) N 1; mew 'pi ' \19)
|:C[.i. G.Ii| = J'f'..ii]l' (20]
the inverse relations being,

Bi = x/zT (am + a;r) . D= —?'-mwx/% (o,a = aI) . (21)

mw

with, in this case,
[#;, p;] = ihd;L (22)
Substituting (21) into (17), we get
T Z ik _ At g e
H = hw ( a1 +agas + 1 ihu; 1&2 g E, (23)

where 9F is a quantum equivalent of the parameter °E. namely a value of energy involving in
the value of fundamental state energy of the quantum system. enable to differ from the classical
value with some corrections in i and such as we get the correspondence limy_q9E = °E.

We now consider the helicity Fock algebra which diagonalise the Hamiltonian (23),
! (o151 ) ! !+ ial), (24)
a+ = —=(ay Fiaz), — == ia
V2 \/_ N
these operators are such as,
[at.al] =1, [ai.ag:] =0. (25)
Then, we have
H = (a1a++ata_+1) —?hw (a ay —ala_ ) 1K
1 1 .
e ?iu,_(a a++2)+ﬁw+(a a— +2)—°E. (26)

When we inverse these relations, the operators &; and §; can be written in terms of the helicity
Fock operators such as,

f a++a_+a*+a’f f - —a++aJr_).

?‘T! ! ?’T!u,

imuw ﬂ?w -
—T\' p— ++a_—a1—aT). [ — lay —a- +a1 T_) (27)

m'
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3.1 Heisenberg representation

In the Heisenberg representation, the time dependence of the quantum system is deseribed by
that of the operators. The Schréadinger equation is satisfied by the operators A(t) in the following

form,
CdA®)  Ta A )
i = [A(U_H]_ (28)

The initial value of this time-dependent first-order differential equation. namely the operator
A(t = 0) (where t = 0 is the reference time), is the operator whose switching rules are those given
bv the correspondence principle in the canonical quantisation considered in this chapter. In the
limit & = 0, it iz these operators in the image or the Heisenberg representation that correspond
to the classical solutions of the associated Hamiltonian equations.

In the present case, all the degrees of freedom of the system are constructed in terms of
the helicity Fock operators whose commutation rules have been specified and established abowve.
Therefore, the time dependence of these Fock operators is sufficient to find that of any compaosite
operator expressed in terms of these Fock operators.

However, The time dependence of these operators is obtained in the following form,
A(t) = e*tH A(t = 0)e~#tH (20)

In accordance with the Baker-Campbell-Hausdorff formula, it follows the time dependence for
the helicity Fock algebra, which is expressed in terms of the phase factors associated with the
angular eigenfrequencies to each helicity mode,

ax — axe WF al, — ale™F, (30)

which can be established immediately from the expression of the Hamiltonian in (26).

3.2 Zero mass limit

In order to find the zero mass limit of the aforementioned system, it is relevant to take into account
the two angular frequencies for the two helicity modes according to the following representation,

o fkg 1B2 :I:lB
Wt = ‘b_+4m2

— {144 —:I:l
Em[ U

IB(1+4m§%)—l

2m1.fl+4*m F1
2"'_‘11
= (31)

,fl—i—ém :Fl

In view of the development carried out and the final result obtained. we have the following
boundaries,

B k’o 1 k‘o m‘% ’
m w, = im — =00,  limw_ =075 _%0 32
mlgl[ll U mlErlD m > mlzlrlﬂ B Bm e (32)
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It is important to note that the expressions (32) will also be utilised in the remainder of this
work; however, the results will only be provided without a demonstration. ?E should be chosen
s0 that the Landan sector of the lowest energy remains up to the limit.

iE = lhw+ —AFE, lim AFE est fini, lim AE = AFEye. (33)
2 m—) m—0

In terms of Fock states, the following set of orthonormal quantum states can be derived as a
consequence of the repeated action of creators al.

| g, mo)i, (34)

which is the lowest energy Landau sector then corresponds to the subspace generated hy the
following Fock states,

| ny,m_=0)y. (35)
The corresponding projector is therefore also expressed in the form.,

oo

Pre = Z | ny.n_=0)pp{ng.no =0/, (36)
1’1+=D

implying for the projected Hamiltonian,

H =PycHPye = hw_ (ala.,_ + %) + AE, (37)
so that,
. — ko t 1 .
?_}:EIGH =3 (a+a+ + E) + AEye. (38)

3.3 Projected coordinate

Using the projector on the lowest Landaun sector, the plan coordinates are also projected in the
following form,,

_ 1 2R _ _ _ i (2R _ _ .
= 5\/;[(:” +ay], Za= E\E [y —a4]. (39)

The expressions (39) can be written as

h h .
T = \/% A+ +a4], T2= ?'.al/%[m — 4], (40}

but their algebras are,

- _.i._z__;—'._h,

(1. 72) = i55(-2) = - 5.
a result applicable exclusively to the Hilbert subspace corresponding to the first Landanu sector,
on which the projection has been done (It is imperative to recognise that, in instances where
necessary, the PNC projector defined above should he incorporated, thereby encompassing a
contribution that is implicit in these subsequent expressions). It is important to note that, once
projected onto this subspace, the Cartesian coordinates of the Euclidean plane result in non-
commutative Cartesian coordinates of the Euclidean plane.

(41)
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4 Quantum non-commutative plane.

This result is merely a consequence of the Lagrange function previously considered (15), in the
litnit 1 — 0, which can he reduced to the following form

1 1 )
Lyc = —5Beijdiz; — Ekgx? —Fy, “Eg= lim °F. (42)

m—0
From the previous Lagrange function, the conjugate momentums hecome

1 2 .
pi = —5Bez;,  Ti= peibj (43)

showing the existence of primary constraints whose the expressions are given by,
. 1 .
@ =pi+ EBEULPJJ (44)
Brackets Poisson algebra of this of primary constraints is,
, 1 1
{i.d5} = {m+ EBfikxk~Pj + 536351‘1}

1 1 )
which shows that they are indeed second class, and can therefore be eliminated by the introduction
of the corresponding Dirac brackets.

5 Canonical Hamiltonian.

We now propose to develop the eanonical Hamiltonian formulation of our system. The canonical
Hamiltonian of the system is established as follows,

1 1
Hy = dupi + ﬁBfiji‘z'l'j + §R'O;B§ + “Ep

1
Ek‘or? + °Ey (46)

Consequently, the primary Hamiltonian, which now includes the two primary constraints, is
defined as follows,

1 1 .
H = ER”D-TE + Eo + 1y (Pz + EB'Eij-Tj) . (47)

where wu;(t) are two arbitrary functions which will be fixed by imposing that the primary con-
straints are stable under the temporal evolution generated by the Hamiltonian Hy. This temporal
dependence is associated to the computed Poisson brackets of these primary constraints with the
primary Hamiltonian Hy, leading in this case to equations for the functions w; which are thus
especially determined in the following form,

. k .
{@HI} = —k'oil‘z' + Beijuj. BEU lﬂj = A‘DI@. U; = _EGEZ'jIj' L—lg‘]

Consequently, for the Dirac brackets computation, we have primary constraints for the Poisson
bracket matrix,

Ay = {2, 5}, (49)
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a1 )
-_\_B(_l 0). (50)
while its inverse is given hy
=l _ 1[0 -1 _
s (0 ). o
Dirac brackets are written then,
{ze.25}p = —{=1, 01}&—‘-)12 {0’2 1‘2}
= —1(-B)l(-1) = . (52)
soif,
€54 ’
{zi,z;}p = —Bey = —EJ- (53)

To summarize, now using the Dirac brackets and solving the second-class primary constraints to
eliminate the p; variables, we obtain,

{iri-irj}:_f_g- HZEkUI?+CEg. (54)

6 Quantified system.

In this section, the canonical quantization of the Hamiltonian is undertaken by introducing the
Fock algebra associated with this choice of degrees of freedom of the system. At the quantum
level, this is expressed in terms of operators as

ih _ 1
20,85 = — ey H— kg2 +9Ey,  °Eg— lim °F. (55)
3] i 5 F0T; (93]
The following terms are introduced here,

7 = \/g (a+ +a}) .‘/_ [m. atr} ~L (56)

Expressions corresponding to inverses are as follows,

dy = “/% [;l._‘l = f-;I‘g] R & .l/_ [1.1 +?.L2] [11 .lg] = —]I (5?)

P = gp[(esval) = (s -at)]

=
I

fi
= E |:ﬁ+(].1 +&1&+]
2 [ 4 1 .
= Zlalar+3 (58)
Finallly, the previous Hamiltonian becomes
H= ﬁ%” {&+a+ + ;] +9E;. (59)

Consequently, the system and the spectrum of the previous system quantized before taking the
limit m = 0 are recovered, provided that an appropriate choice is made for 9K}y,

9Ey = AEpc. (60)
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7 Klauder—Daubechies deformation analysis.

In the context of helicity parametrisation, Landan’'s spherically symmetric harmonic problem
consists of the superposition, that means, in quantised system. the tensor product of the two of
ordinary quantum harmonie oscillators of angular frequencies w_ and w;. The following Klauder-
Daubechies deformed Landan action is to be considered

1 1 1 1. 1
—p? — —mwr? + Sweeijripi + 5470 (n_p‘ + mwi; ) “Exp. (61)

1
L ..
KD 2(%% Tipi) — 2m 2 >

We will apply a canonical transformation defined by the following relations,

Ot = \'! {.u + Lpg] B = :F'mw;v' Bm [;cg F —_m} (62)

The inverses resulting from (62) are given by,

n=\fae i e ”M*f ey g9
1/; +F mu,_f\ 5 i L= 1/7P+ = W+P_. (63)

Below, we will replace the relations {63) in each term contributing to the deformed Klauder-
Daubechies action for the Landau problem given in (61). An immediate computation then allows
us to find,

Fipi — vipi = Q4 Py — Q4 Py + Q_P_ — Q_P_, (64)
on the one hand,
1 ) .
Epg + oty = p— 2+ Q+ + mu,+Q (65)
and on the other hand,
zipz + ;nwg - ;u,.crzzj.:.ﬂ:qb;c:lJ 2 P2 + ;mwg Q+ + 2—P2 + £m+Q2 (66)

Consequently, the deformed Klauder-Daubechies action for this Landau problem is therefore
expressed as follows,

1, .- .
Lkp = §(Q+P+ Q+P+H' (Q-P_—Q_P_)-

1 1
- LTP“% + 5?}1@'3@3 - 2—PE - Eﬂwﬂ_@%} +

1
+—iTp {mw P2 rmw Q2 + P? 4 omw QQ} — *Exp. (67)

2 mwy

We can now introduce the following quantities, ¢% with a = 1, 2 defined by,

11 R -
oy = e Py, ¢L = mwzQy, (68)

or explicitly,

1 , 1 , .

i1 12 1 2

=—2P, = /M _ ., O = P, ¢ = Ay —. 69
@y T + @ Q+ —_— m +Q (69
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When we substitute (68) into the Lagrange function (67), we get,
Lip = 5 (#6h— o) +3 (320l -g2dl) -
- (Bon (ko + ) + Lo (0L6L+ 262) + B
i (6164 + 6263 +6L6L + 6242). (10)

Now the invariant symmetric tensor 4,4, and the invariant antisymmetric symbols €., with €10 = +1
can be introduced. Then Lagrange function on the configuration space ¢% in the Klander—
Danhechies deformation becomes,

1 a4 B A
Lxkp = —itodas (@i'@i + @if)ﬁ_) -
2
I BT 1 D . -
—Efawi@i - Efabcp‘loi - (Ew_éab@ioi + §w+6ab@°i@b_ + ‘EKD) - (M)

The conjugate momentums of the extended system with ¢4 variables are then,

OLkp | w1 y  OLkp | . 1 .
2 = — =1 (5 —_ = N = n = 5 L'.f)a - = l.'ba - ’12
y o dae ETUah Py Zec;a@.,. L. 2ab 1T0dap @ Qeab_ . (72)
Consequently, we have,
PR A S G 1 .
9% = %6“ (p+ + Eebcoi) R ﬁé“ e+ 5 €ad®" | . (73)

but the canonical variables of phase-space are defined as,

{on, ot} =0 {en oh}=o  {m oh}=0, (74)

{c_b‘i. c,:'ab_} =0, {@‘i. pi} = 5%, {p‘i. p*'_} =0. (75)

The effective canonical Hamiltonian of the extended system in the compactness form can
be written in the phase-space as,

H=¢%p% + ¢“p2 — Lgp. (76)
After substitution, we get a bilinear canonical Hamiltonian in ¢4 and p% below,
1 1 1 1 1 . 1
H = —5" (1% + z€acd’ ) [ D) + st ) + —0 (02 + —€aed® ) 12 + s€pat?®
2i70 (Il,. B acPL L 2 b 2it0 Yo 2 ac yu 3 hdt

_ 1
+ iw—éabOi@i_ - §w+c‘$aa¢i¢"_ +“Exp ).

,q.
=1
=1
o

In this form, the quantum spectrum of the extended system in the presence of the imaginary mass

irg will be solved. The results (72) will then be utilised to construct explicitly the Hamiltonian.
From the expression (71), we deduce the conjugate momentums

OLkp il

1 o 2 g 1
—— = iTpdy — -0, Py = —— =imo} + -0y,
3::3_1'_ + 2 + + aﬂ.'-l_'_ + 2 +

Py =
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arL ; 1 L : 1 .
1 KD 1 2 2 KD .13 1 -
_ = — = iTp_ — =@, p. = — = iTp0_ + —@_, 78)
AL : B2 2 L
whose the inverse relations give,
11 L1, 1o 2 1 L
= — f_f) = - L'.f)
"= ( +T3 +) "= (:p_,_ 27
. 1 1 : 1 1 :
11 1 2 12 2 1 ~
_=—plt=a2 ). = s — = 9)
¢ iTi) (p 2 ) ¢ iTo (p 2 ) \79)
Consider the following canonical Hamiltonian under the explicit form
H=o¢lpl +é2p% + ¢lpl + é2p? — Lip, (30)
when we substitute (79) into the equation (80), we get after simplifications
: 2 : 2 . 2 ; 2
1 1, 1 1 1 1 1 1
H = L+ ) +— (PP -0t ) +—— (Pl +20r) +— (2 —d!
24y (p+ 2 2irg \P+ 7 2% 2iTp P 27" 2irg \F=7 29
1 9. .
+ (Ew—fff) m_,_ + m_,_cn_,_) + Ew-'-(ff) + '-,n"b_(;'_,ll + CEK_D) . [\81\]

This form is analogous to that found in (77), provided that the latter is developed explicitly.

8 Canonical quantification.

In this section, the rules of canonical quantization and the correspondence principle for q;bi op-
erators and their Hermitian conjugate moments will be verified with ease. Subsequently, the
canonical Hamiltonian, defined within phase space, will be employed. This implies that (77)
becomes an operator on Hilbert space at the quantum context. This approach has given rise to a
very general formulation of the quantisation of classical systems. Let’s establish the commutation
rules between Hermitian operators for each of the helicity sectors,

|04, 64 ] =nee®, o =dg, B =pt, (82)
and also the Hamiltonian operator for the extended system,
[cffi. ﬁi] =ik, ¢t =¢°, pM=p", (83)
L J. b - J. - b 1 "d J. b . J. = 1 d
H = ﬁda (pi + EEGC@E;-) (jt?+ + 55&!::3@.,_ + %Ja pa; + iﬁac@c_ :,U + - Ebdtﬂ
1 ng 1 FY .
+ (Ew_ Bl + Ew'+5abfﬁi¢’b_ + QEKD) : (84)

9 Construction of the algebra and diagonalisation of the Hamil-
tonian.

9.1 Ordinary Fock states of the extended system

Given Hermitian operators ¢4 and pl, we can define the Fock operators,

1 (10 oo _ -
af = o (mi + 23_1:‘1) . a+T = 2\—/_ (@+ = 2ap+) . (85)
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1 A .
@ (¢* +2i “‘i) . att — (@_ —2ip), 86)
NG ( i 5 \/_ i) (86)
which express the tensor product of two Fock algebras of right and left sector, namely,
[ai_a“] — g9t (87)
[a .a ] = 4°°L. (88)
Next, we define the chiral Fock operators of the Fock algebra of the right and left sectors as
follows,
Lo 1o t Lo, oot :
0+ = 7 (a% Fiaz), al 4 = 7 ( + m+) (89)
oy = L (el Fia2), ol = 1 (a” + ia T) (90)
T V2 = V2
which are such that,
[0+,¢- a:—__:t} =I , [a+,4_--01.,4 =0, (01)
[ﬂ—,t. RT___i} =1 , [a_i.aT_;} = 0. (92)

Inverting these various relations, we obtain the inverse relations of the phase space operators for
each right and left helicity sector, given by

. h 5 i (R
I LICReE S
. i 2 -
e ). o b -ro 2o ). 0
as well as,
h i [k
1 t t 51 t t
= \/; (a__+ +a——t+al  + a_‘_) y P = —5\' 3 (G—..+ ta-—-—a_, — G—.-—) ’
i T t 2 1 fh
:-j_/j(a_ —a__ —a_ +a__). —=—=y/=
\' 5 -+ , —+ ) by 2‘\’ B

Particularly, we have the following relations,

i+ _a-\_/g(h____a;_). A - Lat _,'/g(af__ﬂy_).

~_

a_—a__+al , — aT_r_) . (04)

Pl + ;éi —a'al/g (a---al.), #2- %évl_ = —%@ (a--+al ). (95)

It is evident that each term on the right is accompanied by a normalisation factor. Furthermaore,
the two pairs of operators plays an analogous role to a Fock or Heisenberg algebra, operating
on each of the chiral sectors individuallv. The abstract construction of these algebraic structures
associates a normalised Fock vacuum |2} for the following helicity Fock operators,

arx|),  alil),  (2Q)=1. (96)
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Next, we define the orthonormalized Fock states of the Hilbert space of the quantum system.

1
; ; SO
[ U S S ) ; = = = = X
ny+my _n_ In_ |

(o)™ ()" (L) () )

ny o ony _n_ . n_ ;€ |n++ rz_,__ rz__,_ri____ =

= Oy, Bt Oyl Dl s (08)

where ny y,ngy—n_ 4, n_ _=0,1,2,.... Subsequently, the following spectral decomposition is
applicable to the unit operator in the chiral Fock hasis,

o

Z [ tonp — oy Wiy pong _one pono 0 =1 (00)
Rp o g = T g T =

We will now consider the limit 7y — 07 (by projections) and ohserve how projecting the
syvstem onto a specific Landan level or sector results in an additional reduction and ultimately
leads to the non-commutative Moyal-Voros plane. It is expedient to present the projector in the
subspace of the quantum states of the extended system,

o]
Foo = Z [ny+ny—=0n_4.n__ =0, n i ny_=0n_4.n__=00|
Mg ot =0
P3g=Poo,  Fho=Pog. (100)

The projected operators that vield the Heisenberg algebra in Hilbert space are considered

~ 1 ' N J. -
Py o (Jﬂlr + 5@3) Pyp=0, Foo (pi = Ef.ﬂi) Fog =0,

PDD( + EQQ)PD_Dzﬂ. Poo (332_ )]Poo—ﬂ (101)

b.ul»—

The application of the definitions {100) to the operators of the original phase space (¢4 pk) yields
the following results,

—a

0y =PopdiPoo, 7% =PooptPoo. (102)

Explicitly, the expression (102) can be decomposed into a total of eight independent vari-
ables, which implies the following results

f 1 i /5 _ _t
@+—x a+++a++) , P+=—§\§( +4+ — O,

+
_ 1 fh_ . 1
9 = *‘\f (a++ al, +) , P = 2V 2 ( +t+ + GL__+) =3P+ (103)

—1 Aoy —+ - i /E _ — 1—2
) )
h
2

— — 2 J-/E — —t 14 )
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It is ohserved that, after projection, the only projected coordinates that are independent operators
are the following, with commutation relations that are, in fact, those of the Heisenberg algebra,

[73.72] = —ine"Poo,  [LFL] = —ineBo,. (105)

Indeed, within the projected subspace, we find the quantum Heisenberg algebra of the original
system, even though, in the extended Hilbert space corresponding to the phase space, the position
operw:u:trs.c,:ﬁ':‘_‘F and cp"’i awitch hetween them.

In the two possible limit orders for these two parameters, namely 75 — 0 and m — 0, the
operators cﬁii and (53: take the following form,

. h 3 h
oy = \/; [Q:k__+ +as-+al,+ ﬂ'l.—} . ol= f'-\/; [ai_.+ —as-—al,+ ﬂ'l.—} - (106)

The projection of (106) into the Hilbert subspace generated by | ny +.ny - =0,n_ y =0.n__ =
0; Qg p), in the two limit orders, we always have,

¢k = 1/% [ n/g | —al ] (107)

with the commutator,
|44, 64] = —in. (108)

However, it is important to note that the above states do not diagonalise the Hamiltonian H in
the presence of the spherically symmetric harmonic potential in the case of the Landan problem
with two degrees of freedom (84). Consequently, the linear combinations of basic operators, m‘j‘:
et p§ , with two specific quantities, namely K4 and phases ¢4, are defined as being important
for diagonalising the Hamiltonian operator,

Riezi‘pi = 1+ 4iwsTo, Ry =0, 0< g <

W] =

(109)

=

The complex variables p+ and their conjugates gy are defined as follows,

15 i
pr =/ Ried™W¥t, Pt =/ Rype 2%, (110)
In the limit where 7o — 0% or in the absence of coupling w+ . R+ and pt are two factors equal
to unity, while w4+ vanishes.
Consider the following quantum operators for each helicity sector, right and left,

1 5 2i 1 . 2i
A8 =—(p_o“ +—f;“). Bt =—(p_¢“ ——f;“)_ (111)
+= 57h + 1 o P+ +=ovn + 7 P+ 11
1 5 2i 1 . 2i
Aa_=—(p o‘i+—ﬁi). B =—(p @“;——ﬁ‘l). (112)
2R " P+ VAW P+ o
and their adjoints,
1 2 1 2
At =—(__G'3a ——”G) . BY — — (__OG +—”a). (113)
+ = ouh \P-% 7 Py + = o \P- ?—er 113
1 2 1 2
Aif=—(— c‘a“_——”i) . Bi*:—(— c‘>3+—”‘1). (114)
W [ —+P >R P+ _+.'P 114
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such as,

[Ai_Bﬂ — b — [BE;;T. AET] . (115)
[‘43.35} — §ab — [Bi*. Af‘_‘f] . (116)

[t is evident that the nature of pL as a complex quantity enahles the derivation of the operators
51 and p% in each of the four relations (111) and (113). Through the subsequent substitution
of one operator into the other, the operators A% and BY are expressed, which are deemed to
he adjoint operators when 175 = 0. Following a series of manipulations, a system of equations is
derived, which is expressed as follows,

A%+ = e—%ﬂ- (4% + B2),
A% - Bt = —eiv- (4% - BY). (117)

The development process has vielded the following outcomes,

245 = e7'-(A% + BY) —e"-(A% — BY)
= (cosp_ —ising_)(A% + BY)— (cosp_ +ising_)(AL — BY)
= cosp—(AS +BY) —ising_(AS + BY) — cosp_ (A} — BY) —ising_(A% — BY)
= 2cosp_BY — 2isinp_ A%, (118)

either,
A% = cosp_B% —isinp_A%. (119)

In the same way, we deduce B_“J.
Bt = cosp_A% —isingp_BS. (120)

Using a similar process to the previous one, the operators A% et BY and their adjoints can be
written as linear combinations of Af et Bf, which are defined as,

A§ =cos -'T-*J_Bfr + isin l,-:‘_Aﬁ_T. BY = cos L,-:‘_Af +isin l,-:‘_Bf. (121}

Moreover, these operators correspond to a and af defined above when py = 1, which implies
that w+mg = 0.

Similarly, we start from the equations (112) and (114), from which A% and B will be
deduced, emploving the same computation method as previously outlined. Once again, we have
a system of equations,

AT 4 Bt = e (4% 4 B2),
AT Bt = _e7Wr (4% - BY), (122)
whose solution is,
A% = cos w4+ B2 —isinp A%, B — cos A% — isingp B2, (123)

We can now express operators A% and B2 and their adjoints in terms of linear combination of
A% and B as follow.

A% = cos i BY + ising, A, B® = cos A% +isin g, B (124)
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Let’s introduce the following Fock helicite combinations,
. Lo a2 Lop1 .2,
:'1+‘:|: = EL“{_'_ F '!.“1+J. B+rj: = -‘TE(B-'_ + '-!-B+).
1, . 1 .
A_i= TELAI_ Fid%), B_i= 75(‘81_ +iB?), (125)

with the adjoint operators,

" Lot oot t L o/o1y oo
‘4‘+_.:|: = E (;‘1_'_ + '-!.A._'_) q B+_:|: = E (B+ F ?-B_,_) 8
1 1
Al = 7 (af£aa?),  BL.-= v (Bfr ¥ «;BQ_") . (126)
which are all such that,
[Ay 4, Byz]=1= [B:rr_.t-“{i,i] . (127)
[A_+. B_s]=1= [Bi__ﬂ:"'{i,ﬂ:] . (128)
as well as, on the one hand
ALi =cosp-By + —isinp_Ay o, A4 4+ = cos Q_B:rni + isin k,-:‘_AL:F.
Bi‘i =cosp_ AL 4 —isinp_By 7, B, 4 =cos L,-:_Aii + isin ‘P—BIL,:F' (129)
and the other hand,
Af_i =cosp B_ 4 —isinp A o, A_ L =cos u,-:+BLi + isin k,-:‘+AL:F.
Bi‘i =cosp4 A+ —isinp4Bo £, B_ + =cos u,-:.,.ALi + isin @.,.BL:F. (130)
Expressing these operators in terms of a4 4 et aL__i. we obtain
_ p_+pt p_—p~! 4 P S I
A4 = TaJr‘i + TGJ“:F‘ Al L= 5 ay 4 + 2 [
-1 -1 | - T
p—+ p_ p—— P p_+p- P_— -
Bys= T‘ﬂhi T Bl = R o R — al - (131)
Then, Operators involving a_ 4 and aT___i vield the following results,
9++I—7;l P+_p;l t t ﬁ++_:1 t p-i—_ﬁ—_rl
A—__:I: = Tﬂ_‘i + TG_‘:F. A—,:l: = 5 a_ 4+ B a_ +
- =i - —1 - —1
p++p pr—p Py + P, —7 .
Boi— Tﬂﬂ‘i . gt =2 T al .. (132)

The Fock algebraic relations in equations (127) and (128) are very similar to those of an
ordinary Fock algebra, except that the operators By 4 and A4 4 (or their adjoints) are not
adjoints to each other. However, it is possible to construet a representation theory in the same
way, which leads to: States that we will refer to as Fock states of type A and B.

This representation is established on the Fock void A and B, denoted by |14} and |g),
respectively, such that

A+ |Qa)=0, Bl.|Q8)=0. (133)
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With the right choice of phases and normalisations, the inner product of these states is always
normalised to unit,

(QalQ8) = 1= (2p|Q)- (134)
Fock states of type A are defined as,
|_'\'+‘+. "\I‘h— = "\I—_-‘I"'\I—_-—.-‘ Qq} = x

/Ny Ny IN__IN_ ]
X (By, )Vt (By )Nt (B )V (BC )V Q) (135)

while Fock states of type I are given by,

1
N SN N__ N__:0} = X
Worots Ngmo Nors N =i 828) VNt N, IN_ IN_ 1
Ny + Ny - No + N- -
x(aly) " (4t) (Ai?+) (Ai?_) Q). (136)
where Ny N, _ N__ . N__ = 0.1,2,.... Indeed, given that the operators A+, By 4,
A_+, and B_ 4+, as well as their adjoints, are linear combinations of the Fock operators aq +,

“Tr,.d:- a_+ and aJr_rt, it is evident that either set of states, [Ny o Ny _ N_  N__:Q4} or

INf+ Ny, N_ o N_ _:Qdp}, generates the entire Hilbert space of the extended quantum sys-
temn. To elaborate, each of these sets provides a hasis for the given space. These two hases are
dual to each other, as is immediately demonstrated. The following values are thus obtained for
the overlaps of the vectors of these two bases,,

(Njts Ny N N Q| My g My _ M_ M__:Qp) =
= ONy .My ONy My ON_ M ON_ M, (137)

{."\'Y+‘+. _-'\'Y.h_ . _-'\'Y_l_+. _-'\'Y_‘_: QB|_';1I'I+._+. _';1l'_!r+l__. _'Flr'f_‘+. _'1'}-_‘_: Qq) =
= Ay, My ONg Mo _ON_  M_ ON__M__. (138)

Consequently, the following Identity operator resolutions are hereby presented,
o0

|_'\'T+_+ 3 _'\".'.___k _'\"__.'.. _'\"__—: QA>{_,\.'+‘+. _'\'T+__. g 'T—__+ o _'\"___—: QB| = H

1'\"+ + _.Jr\'r+‘_ N ,+.1'\"_ - =0
L o)

INt o N, N N Q)N Ny - N N_ Q) =1 (139)
Ny Ny —N— y N- =0

The three sets of states, [ny .y . n_ yno ), [Ny ( Ny N_ N_ i Qujand [Ny Ny N_
define three different hases of the extended Hilbert space. The |n4 4,74, —. 11— 4, 72— —1 82} hasis
is self-dual since it is orthonormalised, while the other two bases are dual to each other. This
duality structure is referred to as a bi-module in the mathematical literature.

It is evident that the action of operators Ay 4 and By 4 on Fock states of type A, as well
as the action of the operators Bl‘ + and 4; 4 on Fock states of type B, is similar to that of
the ordinary Fock operators of creation and annihilation on ordinary Fock states. Particularly,
the Fock states of type A, namely [Ny + Ny N_ 4, N_ 104} (resp., the Fock states of type
B, namely [Ny Ny _ N_ N__:Qpg) ) are eigenstates of the operators By 1A 1 (resp.,
ALi BLi ) with as eigenvalues, the natural numbers Ny 4.

Consider the identities (131) and (132) linking the various Fock-type operators. These rela-
tionships enable transformation expressions between the three bases, obtained using Bogolinhowv

transformations. The introduction of complex parameters in the * + 7 and “ — 7 sectors will
facilitate the following,
NPT 5. _P-—7p
y=—7 + =1
-+ p_ p_+P_
P+ — Py ~ P+ —Pi
NG ot S N - St (140)
P+t Py Pyt Py
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A detailed analysis shows that the Fock voids of type A and B are given as,

o _ 2 2 —().+ai,_l+ai,_._+l_a‘_,+a*_,_)
20 = (=) () e ).
p—+ p_ P+t 03
: : Toat ot w5 et ot
Qg) — — 2__1 _ 2__1 €—(A+a+l+a+._+A_a_l+a._‘_) 0. (141)
P+ p— Py + P4
Similarly, we have,
Qp) = Np,(¢_)Np_(ps)e't2¥-BraBy-taneB-4B--)|q ),
i oAt at Lot oat
94) = Na,(po)Na_(pr)e (np-thadipmpedl AL )i ) (142)

where Ny N (p-), Na_(¢y), Ng (=) et Np_{py) are four normalisation factors and,

—z'[:tan-,f:_.-!:_‘_'_.-i!'_‘_+tantp+.-!+_‘+.-§i_._)

Nil(p-)Ng(e+) = (QBle Q).

Np, (-)NgL(p4) = (Qale0P-BraBr-ttenesBoiB--)jg,), (143)

These different representations of the various Fock voids, with excitations of each other,
make it possible to establish all three sets of Fock states. They thus provide complete bases
for the same extended Hilbert space in which we diagonalise the quantum Hamiltonian H, see
(84). Finally, it should be noted that in the limit 79 — 0%, all three Fock voids become
one and the same quantum state, implying that the three bases then coincide, namely the only
[+ g —ti oo ) (ny pone— = 0,1, ,n_q,n__ = 0,1,..) states. Consequently, all
three Fock voids become identical to |2}, Vvhllf:‘ the following correspondences are established for
the creation and annihilation operators,

“‘1+_i — ﬂ-+__:|:. B+:|: — QL 4+ ‘1T =+ — G:—:l: BI—,:E — a.'___:t
A_g—a g, B_i—aly ﬂiaﬁ B, a4 (144)

9.2 Spectrum and energy eigenstates

In this section, the expression (84) of the extended system is to be quantified in terms of the
creation and annihilation operators and diagonalised in terms of the Fock helicity operators
defined above. Through the judicious application of a substitution, we derive the following result,

. R_et- R+
H = ETEB-'- +Ay++ B A —+1) + h——— LB_ +A_++B-_A__+1)
h
—F(B_'_ Ay =By A, _+B__ A L —B__A__)+FEgp. (145)
The Foclk states of type ~1 |\+ + Ny — N 4, N— —:Q4}, are the eigenstates of the operator con-
cerned, while its adjoint ot # H has as eigenstates the Fock states of type B, [Ny + . Ny - N_ 4 N_ _:Qg).

By adding and subtracting in (145) a contribution in ﬁ]L we obtain an equation of the
following form.

- R_e¥- — R_ei¥v= 41

H = hiB A hA——— (B, A, _+1
2iT +.+ +++ 2i7 ( + +. + ]
R_'_E.Zn‘.‘:! —1 R+€“o++l

+h (B4 A_,+T)+h B__A__ +Ekp. (146)

2‘4"-‘}"0 2?.7'0

The quantity Fxp is chosen in such a way that the limit 9 — 07 exists and is non-trivial. In
the context of the deformation of a single harmonic oscillator, it has been established that Epp
is selected as follows,

R+ Eip"' +1
4'3'-‘}"[;.

R_e%— 4+ 1

Exp = (h 4iTy

+$E+(u,'+.?'o]) + (h + AE_(w_, TD)) (147)
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where AE (wy,7p) are arbitrary parameters (they mayv even be complex for a finite value of 7q4)),
and in fact are of the form,
AFy(ws,To) = Fwe Als(weTn), (148)

with A€4(wam) a funection of product (wytg) which vanishes when this argument becomes zero,
such that

lim Afy(wsm) =0 (149)

vt |15

Given the choice of subtraction constant Eg p, the complex energy spectrum of the system, for
a value of 5 = 0, is given by,

H INg 4 Ny N_ N8y =

= EKD[_-\"_,_ + . "l\l'—_-‘l" _"\'Y_‘_;] |_"\'Y+‘+, _"\'Y_i_‘_. _'\'Y____f_ . _'\'T____: Q“;). (150)

AN, ., N, _,N_, ,N__;0p)=
= EgxpWN++, Nt~ N+, N- )Ny +, Ny~ N- 4+, N_—;Qp), (151)

with,

Exkp(N4+: N4y Nop, N ) =

R_e%- —1 R_éetv-+1
= i——N ﬁ,— —+1
2iTg ttt 2iTy (V- +1)
e+ — 1 R_e¥+ 41
R Ty L ryrE L ag, (152)
2iTo 2iTo : :

10 Limit 7y — 0.

10.1 Energy spectrum of the extended system

Let's first consider the development of the functions in (152) to first order, where the argument of
each function must he positive or zero. This will facilitate the integration of the deformation term
and the angular frequencies, thereby enabling the accurate formulation of the energy spectrum
of the deformed system. Then we have

Rie?ex = 1 + diwy T, Roe®t ~ 1+ Ziwgrg+ - - (153)

after, computations, we have,
Riel¥t 4+ 1 i Ryelvx — ]
bz SR NN (PR VEVATI [P <l . VP TN S (154)
2iTg 2iTy

The following function developments are to be used for each helicity sector, right and left respee-
tively. Subsequently, these function developments will be substituted into the expression (152) in
order to identify the energy of the extended system. The resulting expression is as follows,

EKD(‘_"\'Y_'_‘_'_ ._"1\-"_'___._"\'1_.__'_. _"\'Y_‘_:] ) h{.t;__'\r_f_‘.'_ -+ h (—Ti =+ +\'A,-'_) (_'\'T+r_ -+ lj+
0
+m+(\_++1]+ﬁ(——+w+) N__ + Afx. (155)

In t.he limit 79 — 0%, only the lowest Landan sectors for the two decoupled harmonic oscilla-
tors with N _ = 0 and N_ _ = 0 maintain finite energy values, namely the states [N N, _ =
O.N_  , N__ =0:0Q, }—}|H++— Niygotipo =0mn_ 4 =N__,n__ = 0;Qp) for H, and
N4+, \+_ _IJ N_ 4 . N__=0;¢ 5-}—> [y =Niqng_=0n_y=N_4.n__ =0;0kp)
for HT, with Ny Ny =0,1....

A choice for Ex that makes the limit consistent is equivalent to the following value being

taken,
To—=0t R 1 h
Exp ' —+ Sl fw) 4= ot (156)
iTo iTo
Substituting the expression (156) into t.he equation (155) gives
lim Egp(Ny 4, Ny =0,N_ ,N__=0)~hw_N, | +ho,N_, + hw. (157)
T Ot ¥ ;
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It is evident that, within the context of this extended system, the Landau case corresponds to the
scenario where wg = 0. This observation subsequently implies the following equation w = %wc.
This result enables us to express the expression (157) as follows,

. . 1
lm Exp(Nit, No— = 0, N_ 4, N__ = 0) & e (_-\-'_,+ i —) : (158)
To—+0t ' 2 . !

where w, is the cyeclotron frequency of Landau problem.

In this expression, the real energy spectrum of the harmonic oscillator is recognised, where
the pure Landau problem is considered, with no interaction other than with the magnetic field, in-
cluding its vacuum quantum energy. The corresponding energy eigenstates are the Fock states|n, | =
Nytong—=0,n—y=N_ 4 n_ = 0:Qxp}. Therefore, the subspace of the extended Hilbert
space of the extended svstem, generated by the lowest Landan sector, in the limit m = 0, is
determined to be the Hilbert space of the original quantum svstem in this Landan problem.

10.2 Energy spectrum in the limits m — 0 and 7 — 0.

In this section, the two limits in the full spectrum of the Klauder-Daubechies deformation of the
Landan problem are to be considered, with all quantities in which a mass contribution appears
being taken into account. Use the following expressions as a starting point,

1
wy =w+ Ewc (159)
the m — 0 limit for each of the angular frequencies will be performed from this data, according
to the + or — mode. The results obtained for each of these angular frequencies in the m — 0

limit are presented below, without the details of the process. In this limit, the following is true,

. L ko
ﬂ]qll‘l}low_'. = 400, Fl}lz[}low_ =5 (160)
It is important to introduce the following parameters,
2 i ka
Rpe™™™ =1+ “l:'E.ETQ. (161)

The expression of the complete spectrum of the Klander-Daubechies deformation of the
Landau problem (152) in the limit m — 0 with a finite value of 7o becomes, for states which
maintain a finite value of their energy,

Rpe'v + 1 Rpetvo — 1 1
E(N Ny N_,=0N__=0)ch—m——N, _+hi—— (N +—=11. (162)
LV e IV —+ : J Zito +. 2it0 +H+1 3 L )
Then in the limit 7g — 0 the energy spectrum is,

. L To—0t H ko ko 1
E(N Ny Nei=0,N__=0p) "~ = (14:22 e N+ A=WV — ).
(Nt V-, e . J o +igpTo+ ) +—thg ++t+ 3
In the following step, the limit 79 — 0 on the guantum spectrum in (10.2) will be taken, which

will result in the existence of finite energy when Ny _ = 0, as expressed in the following form,
lim FE(N N =0.N =0.N —Ol—ﬁk—o N —l—l (163)
g C W N - =0 A =LA =0 = (N TS ) L )

11 Non-commutative geometry in the Moyal plane.

The Landan problem with the Klauder-Daubechies deformation, which can lead to non-commutative
geometry, can be treated in the same way as the ordinary Landan model. The complete Klander-
Daubechies system of the Landau problem, as described in this work, can be extended to commu-
tator Algebras. This is a Landau problem in the presence of a spherically svimmetric harmonic
potential with its two degrees of freedom, coupled to an external field with velocity-dependent
coupling. To achieve this objective, it is necessarv to consider the limits m — 0 and 7 in the two
possible inverse orders.

It can thus be concluded that the two limits result in the expression (67) being written in
the tollowing form,

1 .. L. 1 .. L
Lxkp = 5(3-‘1331*'J-‘lit?l)Jr;LxQPQ*i‘sz)*
—( =ko(x — _ B _ R - E
(2 0(l1+332J+2m(35'1+35'2J+8m (#1 + 22) — 5— B(T172 rom )+ “Fgp )+
1. 2, .9 9. 1 .9 .9
+§'!,T[:| (EL}J1+P2)+§B(11+1‘2J s (164)
or
1. . | L
Lgp = 5(-”-”1301—I1P1J+§($QP2—:&'2P2J—
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2 2
1 1 1

1. 2.5 1 . .
+370 (Euﬁ +13) + EBLx% + .r.%)) . (165)

1. .
+ Ek‘a(:c% + :r:%) + CEKD) +

In order to surmount the singularity problem that manifests in (165) when m — 0 for the
configurations of (x;,p;) with 4, j = 1.2, which would be generalised, it is necessary to consider
a subspace of the configurations in this phase space following the singularities. It is sufficient to
consider the restriction of configurations (w3, p;) for which the terms multiplied by % are Zero.
This amounts to working in the space defined hy these two conditions,

1 1
pt5Bra=0, pp—5Br =0 (166)

Consequently, the phase space is reduced and once again becomes two-dimensional space, for
which two coordinates, for exampler;. can be chosen. It is imperative to make the following
substitution.

m= —_—B:I?g. Pa = _—B:I?l. (16?)
in (165) before taking the limit m — 0 and 7 finite. We obtain then,
e 1 1 1 e
Lip = EwDB:eE — 5 Beyjiir; - Eﬁ‘gxf - F{S (168)

In the next section, we will quantify this result in order to solve the quantum spectrum
of this massless particle svstern. The expression (164) is to be compared with the form of the
first-order Hamiltonian action below,

TPy . o
Jlap—ap) — Hig.p). (169)

The following identifications are to be made between the phase space coordinates of the deformed
classical system

T g, —Brs — p, (170}
in which (g, p) define canonically conjugate phase space variables with [§,p] = ifil as quantum
commitator. Tt ean be deduced that the commmntator of the non-commutative Heisenberg algebra
for the two coordinates of the Euclidean plane is as follows,

o i -
[£1,39] = —':-E. (171)

We then obtain a quantum system generating a non-commutative geometry in the Cartesian
coordinates of the plane, due to the singularities observed in the variables Q4 and Py which
define a canonical transformation.

12 Klauder—Daubechies quantum non-commutative plane

In this section, the result obtained for the limit w2 — 0 and 75 finite will be quantified. This is
the expression (168) in the presence of a spherically symmetric harmonic potential, which will
be analyvsed in order to determine the quantum energy spectrum of the system. The expression

(168) is written, after rearranging the terms, in the form of the Lagrange function L‘f'\é%.

o 1 1 1 : .
LYS = ZimyBi? — — Bejiyx; — —kox? — °ERS,  °ERSG = lim “Exp (172)
2 2 2 m—+0 ' !
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12.1 Classical Hamiltonian

[n order to construct the Hamiltonian description of the system, it is first necessary to define the
conjugate momentum ; at the degrees of freedom x; by the following expressions,
_ . 1 . 1 -
= 'BTDBIZ' — EBEU"LJ" ry=——|T; + EBEijfj = (1{3]

leading to the canonical Hamiltonian,

. . 2
1 1 1. 5 .rne
H = ——|m+ ZBeiri | + —kor; + “ERF
2_37_03 ( i 2 i J) 2 043 KD
= —1 T2+ ! EBQ +irgBky | 22 — —1 e1iimy + CENG
2irgB ' ' 2imgB \4 b 24 M KD
1 2 1pafy ) 4 k0 o 1 e NG 174
= —ZgTDB G + I + 4?-T[]§I.i — —2?.-?_0 BT + 'K D- ( i ]

The canonical quantization of the system is derived from the following Heisenberg algebra,
[#:, 5] = byl (175)

Thus, the Hamiltonian (7) becomes an operator and is written explicitly as follows,

f 1 o .o 1.0 ko 0 o
H = —|f{+m+-B"(1+4itg— ) (] +23)| —
im0 [ 1 2t 3 g (£ 2)
1 -
—— (179 — doin1) + ERE. 176
20 (&17e — Fom) +*Exp (176)

12.2 Quantification of the system

However, the Hamiltonian in (176) will be canonically quantified using operators @; and c‘e;r. In
order to undertake this task, it appears to be a logical progression to initiate a Fock algebra
associated with this choice of degrees of freedom and ordinary Fock states, namely,

- \/% (%Bi‘+ z'frz-) . al= V/% (%Bi‘i - ?'.r”ri) . (177)

which define the tensor product of two Fock algebras,

=]

[ai. ﬁj] . (178)

Conversely, the operators #; and 7; are defined as follows,

. e . i - -
I§=\/;(Q§+CEI). iy = N hB (ai— a:r) (179)
Then consider the following helicity Fock operators,

| _ |
B = == (a1 F i), al. = = (c{{ i-:'.ag) . (180)

such that,

[Gx,ah] =1,  [Gs, ab]=0. (181)
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From the expressions (179) and (180), we can explicitly deduce the following inverse relationships,

P I O (N, a0 — ] P (ae —a —at gt

T = E(o++o_+a++a_). Ig =i E(a+—o_—a++a_).
o _ L JRB 4 oot (BBt ot .
=—31% (ar+a-—al—al), #=3y/= (ar—a-+al a_). (182)

The construetion of an abstract representation of the algebraic structures under considera-

tion is a prerequisite for the subsequent consideration of a normalised Fock vacuum, | Q“C} for
helicity Fock operators,
ax | QKDY =0, (D I0KB) =1, (183)
with the following orthonormalised states of the Hilbert space of the quantum system,
1 k ke -
|y ko QNGYy — (ﬁ-L) * (ﬁ-*_) | aNCy, (184)
kplk_)
(ke ks QP | G471 O D) = Gy O g (185)
where ki, k_ =0,1,2,---, and the operator identity,
(o]
> Tk ko QFR) Ky ko QFF =1 (186)
ket k—=0
The projector on the Landan sector is thus expressed as follows,
fe]
PXD = Y | kg k- = 0; 0 BW ks, k- = 0: Q85 | . (187)
kg =l

The Cartesian coordinates of the plane projected onto this sector of Hilbert space are then given

by,
N e =t S L
xl—\'ﬁ(a_,.—i-cur). scg—?-xﬁ(a.,_ cz+). (188)

and obev the following commutation relationship.

h

—PIS. 189
—igpFK (189)

[#1.79] =

Omnee again, this reproduces the non-commutative Euclidean plane.

12.3 Diagonalisation of the Hamiltonian

The projected sub-space of the Heisenberg algebra of the quantum system, despite being situated
within the Hilbert space of the &; position operators of the phase space, no longer exhibits
mutual commutation amongst these operators. For the extended system, after the limit m = 0,
but with a finite value of 79, it is useful to introduce linear combinations in order to diagonalise
the Hamiltonian into (176), according to the following relations,

_ 3 )
pb = Re2m — 1+4-5.r0§“. Ry>0, pp=+/Roel®o. (190)
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Let’s define the operators below

G = \/% (%B,ﬂgi‘@ n %ﬁg) . Bi= \/% (égmi\f _ i";) . (191)
While their algebra is expressed as,
[0, B;] = 0,1 = [B:.a;] . (192)
The helicity operators are chosen from the form,
oy = L(o-l Fiag), fi= L(fx’l + i), (193)
2 V2
as well as for adjoint operators,
al = i(a{ +ial), BL= L(ﬁ{ Fif). (194)
V2 V2
The corresponding algebraic structures can he written as,
[ax, By =1 = [L‘?Ti.aTi] (195)

To determine the phase relationships hetween these operators and their adjoints, consider,

t_ L (1 o b :-.) at 1 (1 _ o b 1*-.)
o, =— | =Bpoti — —mi ), B =—\-Bpozi+—mi}). (196)
T VRB 277 T R VEB 27T o
From the expressions (191) and {196), we have,
VREB _ 1 :
Ty = —I(o + 5i)., W= ——ippvVhRB(og — 5i), (197)
Bpy 2
VEB 1 :
& = ELQI +8D, &= Ef.ﬁO\/hB(a-:r —gh. (198)
0

In the following sections, the operators cr;r and ,3: will be expressed in terms of cireular
funetions. To achieve this, we will substitute (197) into (196) and subsequently develop. This
will enable the remainder of the demonstration to he ohtained

t 1 1 o0 2, i 180 2
al = —— | —Bppe'fli; — —e"y
= (e Lo
= Ee—i‘PU (o + 5i) — EEW'U (o — 3i)
= o8 — 18in ooy, (199)
and the same applies to ,
1 1 : i
81 = — (=Bpoe 3, + —eoi,
Hi ] (2 0 i 20 i
= Ee_““m (o + 5) + Ee"*m(ai - 3)
= cosooy — 8inpo;. (200)
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Thus it appears that the helicity operators a-l and E:’l can again he expressed in terms of circular
functions. This is done by substituting (199), (200) and (193) into (194), leading to

t o _ L ( tg .T)
oy = — (o £ in
== \./j 1 2
= cosyof+ — isin goas, (201)
and
,'_-3’1 = T ( )
= cosoat — i8in gz, (202)
Similarly to the previous procedure, we obtain the following constructions,
Q; = COS L,';‘DISJ + isin @Da:{. [; = cos QDQI + i 8in g ,L"i’;r. (203)
as well as
_ o T e 8 t at Py
et = €OS P03 + #sin ooy, + = CO8P00y + i8N0 L. (204)

Note that it is also possible to formmulate these constructions using the a4 and ﬁ-L operators.
In this way, we obtain,

-1 —1 il
Po+ Py _ [ T t Pt Py t Po— Py _
= 5 a4+ + ) la:F_ ap = 5 1L'4__ + 5 (EES
, pot oyt +  po—pyt 4 Pt h Po— Py _t —
Ay = 5 Ay + 5 ax, By = 3 a+ + 2 ar. (205)

We therefore have Fock void of types a and /3, respectively, of the following form
ax |Qa) =0, BL|0g) =0. (206)
With the right choice of phases and normalisations, it is always possible to write these states as,
(Qa | Q) = 1 = (05 | a). (207)

The Fock states of type X are then defined by

KK :0.) = — L gKvgf- 0, (208)

JEIE_ T

However, for Fock states of type /3,

o 1 Ky K_
| Koy Ko Q) = —— (a-ir) (a-T_) | 25, (200)

VELIK !
where K, K_ =0,1,2,.... Since the operators a4, G+ and their adjoints are linear combinations
of the Fock operators a4+ 'lncl ﬁfi it is clear that one or the other of these sets of states, |
K K_ Q) or | Ky K_;Qg), generates the entire Hilbert space of the quantum system. More

specifically, each of these two sets provides a basis for this space, and these two bases are actually
dual to one another,

(K K3 Q| T I Q) = S, gy g = (Kpy K=y Qg | T4, T D). (210)

DOI: 10.9790/4861-1702022352 www.iosrjournals.org 26 | Page



Heisenberg equation of motion approachto the non-Hermitian Hamiltonians with real spectrum

We therefore obtain the following resolutions of the identity operator .

Y K K@) KL Ko |=T= Y | Ky KoiQa)(Kp K| (210)
Ky K_=0 Ky K_=0

In other words, the three sets of states, | R‘+.R‘_;Q‘}'%}, K, K_;Q4) and | K, K_;Qg), define
three distinet bases of the same extended Hilbert space. The | k4, k—; Q‘Q}r%} basis is self-dual, i.e.
orthonormalised, while the other two hases are dual to each other. It is important to note that the
action of the operators a4 and 54 on Fock states of type a, on the one hand, and of the operators
Q‘L and ﬁl on Fock states of type 3, on the other hand., is exactly that of ordinary Fock operators
of ereation and annihilation, respectively, on ordinary Fock states. In particular, the Fock states
o, | Ky, K_:Q,} (resp., Fock states 3, | Ky, K_;{}z}) are eigenstates of the operators aify
(resp., Q-Ti ,31) with K4 eigenvalues. It is evident that the identities relating the Fock operators
between these three different bases are obtained by means of Bogolinhov transformations with
the following complex parameters,

-1 ]
Po—P. Po— P _
Ao = 70_1 . A= — _D_l 5 (212)
20+ Po a0+ o
A detailed analysis shows that the Fock voids of type a and 2 are given as follows,
0 2 )xg&* ﬁrf n;'\'l‘:“ o] 2 —jxgﬁ'f ﬁ* ONC 1
Qo) = ——= ) "= | kD), |Q)=|—"=)¢ "= |Q%D). (213)
i o + Py
and similarly
; ; { . N S .
Ng) = Ng(iwo)e' ™" ¥P+5- | Q5), | Qo) = Na(po)e*H0¥0e4= | ), (214)

Ng(iog) and Ng(yg) are two normalisation factors whose explicit evaluation is not required here,

t ot

N7lpo) = Qg | e7itanwes | Qg Npl= (0 | fBnvobif | ). (215)

It has been demonstrated that the varions helicity Fock vacuum representations, which
relate to coherent states in another basis, establish that all three sets of Fock states provide
complete bases within the same extended Hilbert space. This enables the diagonalization of the
quantum Hamiltonian H.

It should be noted that, in the limit where 7o — 0, all three sets of Fock states reduce

to a single set of basis vectors. The basis vectors in question are the states | k+.k_;Q‘;}'%}
(by ko = 0,1,...), since all Fock vacuum states become identical to | ), and we have the
correspondences for the creation and annihilation operators,
- 4. s &t ot g & o
ot —+ 04, By — ay, oy —F &y, By — k. (216)

12.4 The Quantum Hamiltonian.

The terms contributing to the construction of the Hamiltonian operator will first be determined,
and then substituted in turn in hatH to find the appropriate form of this operator. We thus
obtain,

=

1 . . 1 hB .
Bpii? = —ZpgﬁB [(1 — B1)? + (a2 — Bo)?] + ZB%& [(c1 + B1)? + (a2 + £2)Y]

2
i3 + B0

e | =
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1
= Ehpr [Ctlﬁl + Frog 4+ aafls + L‘?gﬂ'g]

1
= Ehpr [y +a_ B+ Fyray + 5_a]

= hpEB(Biay + B_a +1), (217)
as well as,
Py — Loy = —5'5?1[('3'1 + B1)(e2 — Ba2) — (a2 + B2)(a1 — 5]

= —‘ih[ﬁlﬂ'g - 52[\'1]
= Eh[(ﬁ+ + ) oy —a_ )+ (B — B-)(ay +a_)
= h[ftar — o] (218)

Subsequently, we are able to obtain highly explicit and detailed results for each term caleulated
in H, in order to ascertain the energy spectrum required.

12.5 Energy spectrum.

In the context of the previous representation theory of Hilbert space, it is possible to diagonalize
the Hamiltonian (176) of the extended systemmn, a process which is relatively straightforward. Using
the operators G+ and a4, we obtain the following result,

. hpd . , . | .
Ho= 2i1g Bray+ A a_ +1] - 2ime [Byog — f_a ]+ ELS
h (s 1 ho, ) .
_ ~1) (s ! N Y .
2iTy (pD ) (J— +0+ + 2) + 2itg (PD + } ( o+ 2) +2EXSG (219)

It is evident that the Fock states of type a, | K, K_;Q,), correspond to the eigenstates of the
operator, while those of its adjoint, gt # H, are the Fock states of tyvpe 3, e, | K4, K_;Qg).
Moreover, it is imperative that the subtraction constant is adjusted according to the following
procedure,

- h - -
TENG = e (P +1)+ABRE,  lim AERE = Afyc. (220)

12.6 The limit v — 0

We have the following quantity,

Rpe'vo + 1
06.74_ (221)
2iTy o
which in the limit 75 — 0 the behaviour is as follows
Rpe?™ +1m—o 1k
0 o M (222)

2iTh ~ im B

It is imperative to reiterate that it is the seale of Eﬂ% that determines the contribution of this gap,
which diverges in the limit. It is evident that only the Landan sector with K_ = 0 maintains zero
energy in this limit. Furthermore, in a given Landau sector, the gap between states is determined
by the second quantity,

Rpelve — 1

223
2iTy ( )
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which in the limit 75 — 0 the behaviour is as follows

Rué‘im — 1 m—0 kg
— o —

2irg -~ B (224)

These quantities, taken in the limit 75 — 0, will be substituted in H below to keep the approximate
expression of the Hamiltonian operator,

f

1 h ,

2 . 2 . NC oY
= — -1 o+ — )+ —— + 1) 6f_a_ + AEYE. (225)
Bim (Po ) (L+ - ) im0 (Po ) KD rro)

2

In the limit 75 — 0, the projector is

[s ]
3 IKp Ko =0 0)K K- =00, =P, (226)
leading to the energy spectrum given hy,
im 7 — 5 (ot ey + 1) + ABNG (227)
w0 B\ T TR L R

Finally, we will take the limits m — 0 and 75 — 0 in order to deduce the algebraic structures
of non-commutative geometry. It is clear that by taking these limits in expression {172) we obtain
the result in the following form,

L N 0T

[£1, Z2] = —ip. (228)
The result obtained in this study is analogous to the switch observed in the complete Landau
KD system in the limit m — 0. In the system under consideration, this switch is replicated in
two distinet limit orders: m — 0 and 9 — 0. This property can he discerned in both quantum
systems and their Klauder-Daubechies deformation, as well as in their classical connterparts in
the fi = 0 limit.

13 Conclusions

In this investigation. we have adopted an approach based on the formalism of canonical quanti-
sation in terms of operators, rather than an approach involving the use of the functional integral.
This operator and canonical guantisation approach is particularly pertinent to the type of svs
temn under consideration, namely the generalised Landan problem in the presence of a harmonic
potential and its various deformations, including that proposed by Klander. This approach, us-
ing operators and canonical gquantification, is particularly pertinent to the svstem under study,
namely the generalised Landau problem in the presence of a spherically symimetric harmonic
potential and its various deformations, including the negative one proposed by Klauder. The
latter is, in fact, a pure positive imaginary mass playing the role of a regularisation parameter
and determined in terms of a new fundamental time scale, 7p. In the limit where this time scale
cancels out, the usual quantum formalism and dynamics are recovered.

The technique of canonical quantisation of a distorted formulation of the dynamics of
the original system in terms of time scale 1o is equivalent to the construction of the Klauder-
Daubechies functional integral of the path integral in phase space and based on canonical coherent
states. This canonical formulation has a regularisation parameter proportional to a new time
scale 1o = 0. In the limit where this regularisation parameter cancels out, the correct quantum

dynamics of the syvstem is reproduced. The above method has been explicitly applied to the
specific case of the harmonic oscillator. This approach is different from and complementary to
the Klauder-Daubechies method for quantum dynamics. This approach makes it possible to
recover the original systemn with extended dvnamics whose configuration space is the phase space
of the original system. The phase space and its symplectic geometry are then possessed by the
configuration space, as is a Riemannian metric with the identical volume form. This structure
is associated with an additional Brownian motion component to the quantum dynamics of the
original system. Indeed, when the regularisation of Brownian motion is zero, the original quantum
syvstem persists. This formulation has several advantages, including covariance under general
canonical transformations in phase space, which can be used effectively with the development of
new non-perturbative quantization techniques. This regularisation dynamics is now applied to
the generalised Landau problem in the presence of a sphericallv symmetric harmonic potential in
phase space, with a purely positive imaginary mass itg. This Klanuder-Daubechies construetion
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resonates with recent developments in quantum mechanics and its non-commutative geometry,
which are inspired precisely by the Landan problem, where the mass parameter is taken to cancel
out. The canonical formulation of the operators should also make it possible to extend the
Klauder-Daubechies construction to systems with more than two degrees of freedom. The first
case of interest is then the Landau problem itself and its non-commutative geometry associated
with the Moyal plane in the two possible inverse limit orders. This analysis of the Klauder-
Dauhechies deformation of the Landan harmonic problem reveals a non-commutativity diagram.
Indeed, if we consider the limits m — 0 and 75 — 0 as the quantum energy spectrum of the
complete Landan system, including its Klander-Danbechies deformation, we obtain the same
quantum energy spectrum as that of the system obtained in the limit m — 0. However, it is
worth mentioning that the quantum theory of relativistic fields, with its short-range divergences in
perturbation theorv, provides another eloquent example. Indeed, the operator technique has been
demonstrated to be a particularly suitable tool for preserving the finite value of 19 evervwhere.
This approach is arguably a physically significant choice in the context of deformations of quantum
algebraic structures, and it also facilitates the identification of novel devices. In this respect, a
finite mp provides a new type of short-distance regularisation in local quantum field theory, with
all the short-distance divergences. In the context of the latter, the status of initial cosmological
singularities, where the question of black hole radiation energies remains unresolved, could he
addressed in the Klander-Daubechies context for quantum dynamics.
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