Version-1
- Citation
- Abstract
- Reference
- Full PDF
Abstract: Flow of water at its maximum density past a vertical plate is considered. Effects of a transversely applied magnetic field, variation of the plate temperature and a first order chemical reaction on the flow field are studied by a similarity transformation of the governing equations. For various values of the magnetic, plate temperature exponent and chemical reaction parameter, numerical values proportionate to Skin friction, Nusselt number and Sherwood number are tabulated and graphical results for the velocity, temperature and concentration profiles are presented. Computed values and graphical results for flow of water at a normal temperature are compared with that of flow at 40C.
Key words: Chemical reaction, density of water, plate temperature, Prandtl number , Schmidt number.
Key words: Chemical reaction, density of water, plate temperature, Prandtl number , Schmidt number.
[1] H. Schlichting and K. Gersten : Boundary Layer Theory (8th ed.), Springer , 1999
[2] V.M. Soundalgekar, H.S.Takhar and N.V.Vighnesam (1988): Combined free and forced convection flow past a semi-infinite vertical plate with variable surface temperature: Nuclear Engineering anddesign:110, pp 95-98
[3] Graham Wilks (1973): Combined forced and free convection flow on vertical surfaces: Int. J. of Heat and Mass Transfer: 16, pp1958-1964
[4] M.S.Raju, X.Q.Liu and C.K. Law (1984): A formulation of combined forced and free convection past horizontal and vertical surfaces: Int. J. of Heat and Mass Transfer: 27(12), pp2215-2224
[5] U.N. Das, R.K. Deka and V.M. Soundalgekar (1998): Effect of mass transfer on flow past an impulsively started infinite vertical plate with chemical reaction: The Bulletin, GUMA,5, pp13-20
[6] A. Jyothi Bala and Vijaya Kumar Varma (2011): Unsteady MHD heat and mass transfer flow past asemi-infinite vertical porous moving plate with variable suction in the presence of heat generation and homogeneous chemical reaction: Int. J. of Appl. Math. And Mech., 7(7), pp20-24
[7] Mostafa AA Mahmoud (2007): A note on variable viscosity and chemical reaction effects on mixed convection heat and mass transfer along a semi-infinite vertical plate: Mathematical Problems in Engineering, 2007, pp1-7
[8] S. L. Goren (1966): On free convection in water at : Chemical Engineering Science, 21, pp515-518
[9] H. Herwig (1985): An asymptotic approach to free-convection flow at maximum density: Chemical Engineering Science, 40(9), pp1709-1715
[10] V.M. Soundalgekar, T.V. Ramana Murty and N.V. Vighnesam (1984): Combined forced and freeconvective flow of water at past a semi-infinite vertical plate: Int.J. of Heat & Fluid Flow,5(1), pp54-56..................
[2] V.M. Soundalgekar, H.S.Takhar and N.V.Vighnesam (1988): Combined free and forced convection flow past a semi-infinite vertical plate with variable surface temperature: Nuclear Engineering anddesign:110, pp 95-98
[3] Graham Wilks (1973): Combined forced and free convection flow on vertical surfaces: Int. J. of Heat and Mass Transfer: 16, pp1958-1964
[4] M.S.Raju, X.Q.Liu and C.K. Law (1984): A formulation of combined forced and free convection past horizontal and vertical surfaces: Int. J. of Heat and Mass Transfer: 27(12), pp2215-2224
[5] U.N. Das, R.K. Deka and V.M. Soundalgekar (1998): Effect of mass transfer on flow past an impulsively started infinite vertical plate with chemical reaction: The Bulletin, GUMA,5, pp13-20
[6] A. Jyothi Bala and Vijaya Kumar Varma (2011): Unsteady MHD heat and mass transfer flow past asemi-infinite vertical porous moving plate with variable suction in the presence of heat generation and homogeneous chemical reaction: Int. J. of Appl. Math. And Mech., 7(7), pp20-24
[7] Mostafa AA Mahmoud (2007): A note on variable viscosity and chemical reaction effects on mixed convection heat and mass transfer along a semi-infinite vertical plate: Mathematical Problems in Engineering, 2007, pp1-7
[8] S. L. Goren (1966): On free convection in water at : Chemical Engineering Science, 21, pp515-518
[9] H. Herwig (1985): An asymptotic approach to free-convection flow at maximum density: Chemical Engineering Science, 40(9), pp1709-1715
[10] V.M. Soundalgekar, T.V. Ramana Murty and N.V. Vighnesam (1984): Combined forced and freeconvective flow of water at past a semi-infinite vertical plate: Int.J. of Heat & Fluid Flow,5(1), pp54-56..................
- Citation
- Abstract
- Reference
- Full PDF
| Paper Type | : | Research Paper |
| Title | : | Charge transfer cross-sections in H+Li(2s)collisions |
| Country | : | India |
| Authors | : | Y N Tiwari |
| : | 10.9790/4861-0120813 ![]() |
Abstract : Single charge transfer cross-section in H+-Li (2s) collisions has been studied in the frame work
of the Coulomb-Born Distorted Wave approximation (CBDWA). The differential as well as total cross-sections
have been calculated in the energy range from 10keV to 1MeV.The results so obtained have been compared with
other's available results.
Key words: Coulomb-Born distorted wave approximation. Differential cross-sections, Electron captureTotal cross-sections
Key words: Coulomb-Born distorted wave approximation. Differential cross-sections, Electron captureTotal cross-sections
[1] G.Ferrante , E Fiordilino and M Zarconi,Nuovo Cimento,vol.52 B,No. 2(1979)
[2] G. Ferrante,E.Fiordilino ,Nuovo Cimento,vol.57 B,No. 1(1980)
[3] R .Daniel,G.Ferrante and E.Fiordilino ,Nuovo Cimento ,vol.54B,No.1 (1979)
[4] A.M.Ermolaev, J.Phys.B7, 1069(1984)
[5] W.Fritsch and C.D.Lin, J.Phys.B 16, 1595(1983)
[6] H.Sato and M.Kimura, Phys.Lett. 36A, 286(1983)
[7] Armin Lur and Alejandro Saenz, Phys.Rev.A, 77, 052713(2008)
[8] E.Ghanbari-Adivi , J.Phys.B 44, 165204(2011)
[9] P.Simsic and W.Williamson Jr, J. Chem.Phys.57, 11(1972)
[10] Y.N.Tiwari, Pramana, J.Phys, vol.70, No.4, 753(2008)
[11] M. R. C. McDowell and J. P. Coleman, Introduction to the theory of ion-atom collisions, p278 (1970)North-Holland Publishing
Company, Amsterdam-London
[12] C.E.Moore, Atomic Energy Levels, NHS Circular No.467, Vol. I (1958)Washington D C, U.S .Govt. Printing press)
[13] H.S.W.Massey, 1958, Atomic collision processes, Ed. By M.R.C McDowell, North-Holland (Amsterdam)
[2] G. Ferrante,E.Fiordilino ,Nuovo Cimento,vol.57 B,No. 1(1980)
[3] R .Daniel,G.Ferrante and E.Fiordilino ,Nuovo Cimento ,vol.54B,No.1 (1979)
[4] A.M.Ermolaev, J.Phys.B7, 1069(1984)
[5] W.Fritsch and C.D.Lin, J.Phys.B 16, 1595(1983)
[6] H.Sato and M.Kimura, Phys.Lett. 36A, 286(1983)
[7] Armin Lur and Alejandro Saenz, Phys.Rev.A, 77, 052713(2008)
[8] E.Ghanbari-Adivi , J.Phys.B 44, 165204(2011)
[9] P.Simsic and W.Williamson Jr, J. Chem.Phys.57, 11(1972)
[10] Y.N.Tiwari, Pramana, J.Phys, vol.70, No.4, 753(2008)
[11] M. R. C. McDowell and J. P. Coleman, Introduction to the theory of ion-atom collisions, p278 (1970)North-Holland Publishing
Company, Amsterdam-London
[12] C.E.Moore, Atomic Energy Levels, NHS Circular No.467, Vol. I (1958)Washington D C, U.S .Govt. Printing press)
[13] H.S.W.Massey, 1958, Atomic collision processes, Ed. By M.R.C McDowell, North-Holland (Amsterdam)
- Citation
- Abstract
- Reference
- Full PDF
Abstract: Pure and Doped L- Arginine Maleate (LArM) a nonlinear optical material has been successfully
grown from slow evaporation method. FTIR analysis was used to confirm the presence of various functional
groups in the grown crystals. Kurtz powder SHG measurements confirm the NLO property of the grown crystal.
X- Ray powder diffraction studies have been carried out in order to calculate the lattice parameter values.
grown from slow evaporation method. FTIR analysis was used to confirm the presence of various functional
groups in the grown crystals. Kurtz powder SHG measurements confirm the NLO property of the grown crystal.
X- Ray powder diffraction studies have been carried out in order to calculate the lattice parameter values.
[1]. J. Madhavan, S. Aruna, K. Ambujam, A. Joseph Arul Pragasam, S. M. Ravikumar,M. Gulam Mohamed, and P. Sagayaraj, Cryst.Res. Technol., October 2006,41,No.10 pp 997 – 1001
[2]. J. Madhavan, S. Aruna, P. C. Thomas, M. Vimalan, S. A. Rajasekar, and P. Sagayaraj, Cryst. Res. Technol., January 2007, 42,No.1, pp 59 – 64
[3]. S. Selvakumar , S.M. Ravi Kumar, Ginson P. Joseph, K. Rajarajan , J. Madhavan , S.A. Rajasekar , P. Sagayaraj, Materials Chemistry and Physics, May 2007,103 , pp 153–157
[4]. S. Senthil , S.Pari , P.Sagayaraj , J.Madhavan, Physica B June 2009,404 pp 1655–1660
[5]. D. Sankar , P. Praveen Kumar , J. Madhavan, Physica B , February 2010 , 405,pp 1233–1238
[6]. R.Sankar, R.Muralidharan, C.M.Raghavan, R.Jayavel, Materials Chemistry and Physics 107(2008)51
[7]. A.Josheph Arul Prakasam, J.Madhavan, M.Gulam Mohammed, S.Selvakumar, K.Ambujam and P.Sagayaraj, Opt. Mat. (2006)
[8]. S.B.Monaco, L.E.Devis, S.P.Velsko, F.T.Wang, D.Eimerl and A.Zalkin, J.Cryst.Growth 85, 252-255 (1987)
[9]. A.M.Petrosyan, R.P.Sukiasyan, H.A.Karapetyan, S.s.Terzyan and R.S.feigelson, J.Cryst.Growth 213, 103-111 (2002)
[10]. T.Mallik, T.Kar, Cryst.Res.Technol. 40 No.8, 778-781 (2005)
[2]. J. Madhavan, S. Aruna, P. C. Thomas, M. Vimalan, S. A. Rajasekar, and P. Sagayaraj, Cryst. Res. Technol., January 2007, 42,No.1, pp 59 – 64
[3]. S. Selvakumar , S.M. Ravi Kumar, Ginson P. Joseph, K. Rajarajan , J. Madhavan , S.A. Rajasekar , P. Sagayaraj, Materials Chemistry and Physics, May 2007,103 , pp 153–157
[4]. S. Senthil , S.Pari , P.Sagayaraj , J.Madhavan, Physica B June 2009,404 pp 1655–1660
[5]. D. Sankar , P. Praveen Kumar , J. Madhavan, Physica B , February 2010 , 405,pp 1233–1238
[6]. R.Sankar, R.Muralidharan, C.M.Raghavan, R.Jayavel, Materials Chemistry and Physics 107(2008)51
[7]. A.Josheph Arul Prakasam, J.Madhavan, M.Gulam Mohammed, S.Selvakumar, K.Ambujam and P.Sagayaraj, Opt. Mat. (2006)
[8]. S.B.Monaco, L.E.Devis, S.P.Velsko, F.T.Wang, D.Eimerl and A.Zalkin, J.Cryst.Growth 85, 252-255 (1987)
[9]. A.M.Petrosyan, R.P.Sukiasyan, H.A.Karapetyan, S.s.Terzyan and R.S.feigelson, J.Cryst.Growth 213, 103-111 (2002)
[10]. T.Mallik, T.Kar, Cryst.Res.Technol. 40 No.8, 778-781 (2005)
