Volume-1 ~ Issue-6
- Citation
- Abstarct
- Reference
- Full PDF
Abstract: Solid complexes of 5-C-prenylgallacatophenone having general formula [M (C13H15O4)3] {Where M = La(III), Pr(III), Nd(III) & Tb(III)} are prepared and characterized by elemental analyses, I R., diffuse reflectance spectra, 1HNMR and thermal decomposition studies. They are found to have octahedral geometries. The complexes undergo thermal decomposition involving random nucleation mechanism. The evaluation of thermal kinetic parameters (E&Z) by using non isothermal method is reported.
Key words: Characterization, kinetic parameters, decomposition, complexes.
Key words: Characterization, kinetic parameters, decomposition, complexes.
[1.] Karthikeyan G, Mohanraj K, Elango K P and Girishkumar K, Transition Met. Chem., (2004) 29, 86.
[2.] Premkumar Tand Govindarajan S, J. Microbiol. Biotechnol., (2006) 22, 1105.
[3.] Chiu M L, Nelson P W, Paetznick V L and Rex J H, J. Clin. Microbiol., (1999) 37, 1625.
[4.] Karthikeyan G, Mohanraj K, Elango K P and Girishkumar K, Russ. J. Coord. Chem., (2006) 32, 380.
[5.] Viprachticky D and Gimrova V, Macromolecular, (2002)35, 3463.
[6.] Okamoto S, Vyprachicky D, Furuya H, Abe A and Okamoto Y, Macromolecules, (1996)29, 3511.
[7.] Jain A C, Lal Pyare and Sheshadri T R, Ind. J. Chem., (1969) 7, 1072.
[8.] Nakamoto K, Infra red spectra of Inorganic and Coordination compounds, Wiley: N.Y 1970.
[9.] Burmeister J K, Coord. Chem. Rev., 1966, 1968 and 1990.
[10.] Dieke G H, "Spectra and Energy levels of Rare Earths Ions in Crystals" Interscience, New York (1980).
[2.] Premkumar Tand Govindarajan S, J. Microbiol. Biotechnol., (2006) 22, 1105.
[3.] Chiu M L, Nelson P W, Paetznick V L and Rex J H, J. Clin. Microbiol., (1999) 37, 1625.
[4.] Karthikeyan G, Mohanraj K, Elango K P and Girishkumar K, Russ. J. Coord. Chem., (2006) 32, 380.
[5.] Viprachticky D and Gimrova V, Macromolecular, (2002)35, 3463.
[6.] Okamoto S, Vyprachicky D, Furuya H, Abe A and Okamoto Y, Macromolecules, (1996)29, 3511.
[7.] Jain A C, Lal Pyare and Sheshadri T R, Ind. J. Chem., (1969) 7, 1072.
[8.] Nakamoto K, Infra red spectra of Inorganic and Coordination compounds, Wiley: N.Y 1970.
[9.] Burmeister J K, Coord. Chem. Rev., 1966, 1968 and 1990.
[10.] Dieke G H, "Spectra and Energy levels of Rare Earths Ions in Crystals" Interscience, New York (1980).
- Citation
- Abstarct
- Reference
- Full PDF
|
: | Resaerch Paper | |
| Title | : | Synthesis of Tribromomethyl substituted cyclo propanes via Dehalogenation Recation | |
| Country | : | India | |
| Authors | : | Ravi Ga, Prof Ravinder Nath Aa, Bhagya Laxmi Bb, Damodhar S | |
| : | 10.9790/5736-0160508 ![]() |
Abstract :A two-step process for the synthesis of tribromomethyl-substituted cyclopropanes is described.
Halothane, an anesthetic agent, is added to olefins in a ruthenium-catalyzed reaction. The resulting 1,3-
dihalides are converted into cyclopropanes by dehalogenation with magnesium. This procedure represents an
alternative to metal-catalyzed cyclopropanations involving tribromomethyl diazomethane.
Halothane, an anesthetic agent, is added to olefins in a ruthenium-catalyzed reaction. The resulting 1,3-
dihalides are converted into cyclopropanes by dehalogenation with magnesium. This procedure represents an
alternative to metal-catalyzed cyclopropanations involving tribromomethyl diazomethane.
[1] O'Hagan, D. J. Fluorine Chem. 2010, 131, 1071– 1081
[2] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37
[3] Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37
[4] Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881– 1886
[5] Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432– 5446
[6] Grygorenko, O. O.; Artamonov, O. S.; Komarov, I. V.; Mykhailiuk, P. K.
[7] Morandi, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 938– 94
[8] Morandi, B.; Mariampillai, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50
[9] Morandi, B.; Cheang, J.; Carreira, E. M. Org. Lett. 2011, 13, 3080– 3081
[10] Künzi, S. A.; Morandi, B.; Carreira, E. M. Org. Lett. 2012, 14, 1900– 1901
[2] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37
[3] Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37
[4] Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881– 1886
[5] Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432– 5446
[6] Grygorenko, O. O.; Artamonov, O. S.; Komarov, I. V.; Mykhailiuk, P. K.
[7] Morandi, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 938– 94
[8] Morandi, B.; Mariampillai, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50
[9] Morandi, B.; Cheang, J.; Carreira, E. M. Org. Lett. 2011, 13, 3080– 3081
[10] Künzi, S. A.; Morandi, B.; Carreira, E. M. Org. Lett. 2012, 14, 1900– 1901
- Citation
- Abstarct
- Reference
- Full PDF
|
: | Resaerch Paper | |
| Title | : | Trace Metals Speciation in Floodplain Soil in Enugu Metropolis, Nigeria | |
| Country | : | Nigeria | |
| Authors | : | L.O. Ajala, V.I.Onwukeme | |
| : | 10.9790/5736-0160913 ![]() |
Abstract: Soil samples were collected from floodplain sediment in Enugu Urban, Nigeria to investigate the speciation and bioavailability of some trace metals, namely; iron, manganese, copper, zinc, lead, nickel and cadmium. Extracts from the soil were obtained by sequential extraction as described by Horowitz et al. The metals occurred with the following percentage bioavailability: Fe(67.00%), Mn(65.10%), Cu(44.70%), Zn(52.90%), Pb(53.80%), Ni(53.90%) and Cd(8.30%). Exchangeable metals and metals bound to carbonates accounted for over 50% of the total fractions. Metals bound to Fe-Mn oxides and humic materials accumulated 4.50% and 7.96% respectively, while residual metals bounded 34.93% of the sediment fraction. Lead had the highest distribution in exchangeable, carbonate and residual fractions while zinc was partitioned mostly in reducible and oxidizable forms. The high concentration of lead in both the carbonate and exchangeable forms depict its greater mobility tendency in the soil and consequently, bioavailable to biota. The results of the finding indicated that these trace metals with exception of cadmium were readily bioavailable in this urban soil, therefore, phytoremediation is advocated.
Keywords: Speciation; Trace metals; Floodplain sediments; Bioavailability; Pollution.
Keywords: Speciation; Trace metals; Floodplain sediments; Bioavailability; Pollution.
[1] S. Stevovic, V.S. Mikovilovic and D. Calic-Dragosavac, Environmental impact of site location on macro- and micro-elements in Tansy, African J. of Biotech., 9(16), 2010, 2408-2412.
[2] M. Imperator, P. Adama, D. Naimo, M. Arienzo, D. Stanzione and P. Violante, Spatial distribution of heavy metals in urban soils of Naples city, Italy, Environmental Pollution, 124, 2003, 247-256.
[3] M. Wyzkowski and J. Wyszkowska, Effects of soil contamination by copper on the content of macro-elements in spring barley, Pol. J. Nat. Sci. 14, 2003, 309-320.
[4] T. Nemeth, E. Molnar, J. Csillag, K. Bujtas, A. Lukacs, G. Partay, J. Feher and G. T. van Genuchten, Mobility of some heavy metals in soil-plant systems studied on soil monoliths. Wat. Sci. Tech., 28(3-5), 1993, 389-398.
[5] J. Thornton, Applied Environmental Geochemistry (London: Academic Press, 1983), 501.
[6] H. Akcay, A. Oguz and C. Karapire, Study of heavy metal pollution and speciation in Buyak Menders and Gedis river sediments, Water Res., 37, 2003, 813-822.
[7] A.K. Papafilippaki, M.E. Kotti, and G.G. Stavroulakis, Seasonal variation in dissolved heavy metals in the Keritis river, Chania, Greece. Global NEST Journal, 10(3), 2008, 320-325.
[8] A. Turkmen and M. Turkmen, The seasonal variation of heavy metals in the suspended particulate material in the Iskenderun Bay (North-Eastern Mediterranean sea, Turkey). E.U. Journal of Fisheries & Aquatic Sciences, 21(3-4), 2004, 307-311.
[9] en.wikipedia.org/wiki/Enugu.Retrieved07/09/2011.
[10] A.J. Horowitz, A primer on sediment – trace element chemistry (Chelsea: Lewis Publ. Inc., 1991).
[2] M. Imperator, P. Adama, D. Naimo, M. Arienzo, D. Stanzione and P. Violante, Spatial distribution of heavy metals in urban soils of Naples city, Italy, Environmental Pollution, 124, 2003, 247-256.
[3] M. Wyzkowski and J. Wyszkowska, Effects of soil contamination by copper on the content of macro-elements in spring barley, Pol. J. Nat. Sci. 14, 2003, 309-320.
[4] T. Nemeth, E. Molnar, J. Csillag, K. Bujtas, A. Lukacs, G. Partay, J. Feher and G. T. van Genuchten, Mobility of some heavy metals in soil-plant systems studied on soil monoliths. Wat. Sci. Tech., 28(3-5), 1993, 389-398.
[5] J. Thornton, Applied Environmental Geochemistry (London: Academic Press, 1983), 501.
[6] H. Akcay, A. Oguz and C. Karapire, Study of heavy metal pollution and speciation in Buyak Menders and Gedis river sediments, Water Res., 37, 2003, 813-822.
[7] A.K. Papafilippaki, M.E. Kotti, and G.G. Stavroulakis, Seasonal variation in dissolved heavy metals in the Keritis river, Chania, Greece. Global NEST Journal, 10(3), 2008, 320-325.
[8] A. Turkmen and M. Turkmen, The seasonal variation of heavy metals in the suspended particulate material in the Iskenderun Bay (North-Eastern Mediterranean sea, Turkey). E.U. Journal of Fisheries & Aquatic Sciences, 21(3-4), 2004, 307-311.
[9] en.wikipedia.org/wiki/Enugu.Retrieved07/09/2011.
[10] A.J. Horowitz, A primer on sediment – trace element chemistry (Chelsea: Lewis Publ. Inc., 1991).
- Citation
- Abstarct
- Reference
- Full PDF
|
: | Resaerch Paper | |
| Title | : | Studies of Influence of Ionic strengths of Cu (II) metal ion complex with Rubeanic acid by PH - metric technique. | |
| Country | : | India | |
| Authors | : | Quazi Syed Azharuddin | |
| : | 10.9790/5736-0161416 ![]() |
Abstract: The interaction of Cu (II) metal ion complex with Rubeanic acid has been studied at various ionic strengths PH - metrically. The values of Pk [Proton - Ligand stability constant] and log k [Metal - Ligand stability constant] are utilised to estimate the thermodynamic stability constant at zero ionic strength and to know the exact nature of complexation equilibria. Pk/log k values are found to be increasing with decreasing the values of ionic strengths. Key words: Cu (II), Dithio-oxamide [Rubeanic acid] Ethanol.
[1] Sumer, D. Thakur, Der Pharma Chemica, [2011], 3 (6) 382-389.
[2] Jaisingh, Keemtilal and Gupta K.C., Acta Ciencia Indica 1, 20 [1979].
[3] Gudadhe, S. K., Jamode V. S. and Narwade M.L. Acta Ciencia Indica 9c, 4, 234 [1985].
[4] Mandakmare, A. V. and Narwade M. L. Acta Ciencia Indica, 20c, 1, 30 [1994].
[5] Palaskar, N. G. and Samyak, J. of Chem., 2, 1, Jan, March, 26-29 [1998].
[6] Meshram, Y. K. Orient J. Chem., 16(1) 173-176 [2000].
[7] May, W. R. and Jones M.M., J. Inorg. Nucl. Chem. 24511 [1962].
[8] Williams, R.J., P, J, Phy. Chem. 58, 121 [1954].
[9] Irving, H. and Rossoti, H. J. Chem. Soc. 2904 [1954].
[10] Sawalakhe, P.D. and Narwade M.L., Ind. Journal of Chem. Soc., 71, 49 [1994].
[2] Jaisingh, Keemtilal and Gupta K.C., Acta Ciencia Indica 1, 20 [1979].
[3] Gudadhe, S. K., Jamode V. S. and Narwade M.L. Acta Ciencia Indica 9c, 4, 234 [1985].
[4] Mandakmare, A. V. and Narwade M. L. Acta Ciencia Indica, 20c, 1, 30 [1994].
[5] Palaskar, N. G. and Samyak, J. of Chem., 2, 1, Jan, March, 26-29 [1998].
[6] Meshram, Y. K. Orient J. Chem., 16(1) 173-176 [2000].
[7] May, W. R. and Jones M.M., J. Inorg. Nucl. Chem. 24511 [1962].
[8] Williams, R.J., P, J, Phy. Chem. 58, 121 [1954].
[9] Irving, H. and Rossoti, H. J. Chem. Soc. 2904 [1954].
[10] Sawalakhe, P.D. and Narwade M.L., Ind. Journal of Chem. Soc., 71, 49 [1994].
